
  

PH444 (Electromagnetic Theory 1) Lectures on  
MONDAY      SLOT  2A (09:30-10:25 )
TUESDAY     SLOT  2B (10:35-11:30 )  
THURSDAY  SLOT  2C (11:35-12:30 )                           
                                                                         
Instructor : Kantimay Das Gupta : kdasgupta@phy

Reference texts:

D J Griffiths 
Feynman Lectures: vol 2
Panofsky and Philips
Reitz, Milford and Christy
J D Jackson
A Zangwill

EVALUATION (typical) Quiz1=15 : Midsem=30 : Quiz2=15 : Endsem=40 
1 Formula sheet + calculator allowed in all exams....no need to ask! 
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Course plan (~ 30 lectures + 10 tutorials)
Bit of revision of co-ordinate systems
Electrostatics: Poisson Formula (2D), complex numbers & 
conformal mapping problems, how to go off-axis...
3D solutions in cylindrical systems (Bessel functions etc)
Green's theorem, solution for certain geometries

Multipoles. Dielectrics & Magnetic materials: Microscopic 
mechanisms, expressions for energy, defintions of E,D,B,H (what 
are the ambiguities?)

Energy, momentum & forces in EM, Stress Tensor and its uses.

Potential/fields of moving point charges (Leinard-Wiechart)
Radiation from accelerating charges, dipoles etc. 
Antennas, transmission lines and waveguides.
Brehmsstralung, Synchrotron, Cerenkov radiation, free electron 
laser



  

In other words.....''what if google is down“ ?
Working out from ''first principles'' makes things clearer!

A little bit of ''desert island physics'' : Why ?



  

Revision of grad, div, curl

How to derive the expressions in 
orthogonal curvilinear co-ordinates?



  

Writing the basic information about orthogonal co-ordinates....
d r⃗ = ϵ̂1h1du1 + ϵ̂2h2du2 + ϵ̂3h3du3

ds2 = ?
dV = ?

A shorthand compact way of writing co-ordinates

d r⃗ = ∑ ϵ̂i hid ui

Summation convention :
REPEATED INDEX IMPLIES SUMMATION
d r⃗ = ϵ̂i hid ui

Curvilinear co-ordinates : quick revision 

Exercise : See the list of co-ordinate systems given in Spiegel's vector analysis 
book....work out all the scale factors etc.



  

Given a scalar function f (u1,u2,u3)   we want a vector such that

δ f = X⃗ .δ r⃗
= X⃗ .[ ϵ̂1h1δu1 + ϵ̂2h2δu2 + ϵ̂3h3 δu3]

=
∂ f
∂ u1

δu1+
∂ f
∂u2

δu2+
∂ f
∂u3

δu3

X⃗≡∇ f =[ ϵ̂11
h1

∂ f
∂u1

+ϵ̂2
1
h2

∂ f
∂ u2

+ϵ̂3
1
h3

∂ f
∂ u3 ]

Curvilinear co-ordinates : Gradient 

For a given |δ r⃗ |  maximum change δ f  will happen 
If the step is taken along the direction of ∇ f



  

Consider a vector F⃗ : can you construct a functionX ( F⃗ )such that
X ( F⃗ )dV = F⃗ . d S⃗

Flux through BACK
f B = −F1h2δu2h3 δu3

Flux through FRONT
f F = F1h2δu2h3 δu3

+ ∂
∂u1

(F1h2 δu2h3 δu3)δu1

f B+ f F = [ ∂
∂ u1

(F 1h2h3)]δu1 δu2 δu3

!! BE VERY CLEAR ABOUT THE SIGN OF EACH QUANTITY !!

Divergence ….how to write it?



  

The LEFT + RIGHT pair gives

f L+ f R = [∂∂u2

(F 2h1h3)]δu1δu2 δu3

The BOTTOM + TOP pair gives

f Bottom+ f Top = [∂∂ u3

(F3h1h2)]δu1δu2δu3

f TOTAL = [∂∂ u1

(F 1h2h3)+
∂
∂u2

(F 2h1h3) + ∂
∂ u3

(F3h1h2)]δu1 δu2δu3

F⃗ .δ S⃗
δV

=
1

h1h2h3 [
∂
∂u1

(F1h2h3)+
∂
∂ u2

(F2h3h1) + ∂
∂ u3

(F 3h1h2)]
Now break a finite volume into small volume elements

Flux from neighbouring walls of two infinitesimal volume elements will cancel

Only faces which form the part of the boundary of the volume will not cancel

Divergence …



  

Divergence of a vector is a scalar quantity

In Cartesian:

∇⃗ . F⃗ =
∂ F x

∂ x
+

∂F y

∂ y
+

∂ F z

∂ z
In Spherical polar:

∇⃗ . F⃗ =
1

r2 sin θ [∂∂ r (r2 sin θF r) + ∂
∂θ

(r sin θF θ) + ∂
∂ϕ

(rF ϕ)]
In cylindrical polar

∇⃗ . F⃗ =
1
ρ [∂∂ρ

(ρFρ) + ∂
∂ϕ

(F ϕ) + ∂
∂ z

(ρ F z)]

This function is called DIVERGENCE, denoted by ∇⃗ . F⃗

∰ ∇⃗ . F⃗ dV = ∯ F⃗ . d S⃗
Called Gauss ' s theorem

''divergence'' should
convey a visual picture of 
the Vector field.... 
What is it? 

How should a vector field 
look around points of 
stable/unstable  
equilibrium ?

Divergence and continuity 
equation....

Divergence ….



  

Consider two arbitray infinitesimal displacements

The vector field is F⃗ : Is it possible to have a function X ( F⃗ )such that

X ( F⃗ ).δ S⃗ = ∑
peri -

meter

F⃗ .δ l⃗

δ r⃗α
= ϵ̂1h1 δu1

α
+ ϵ̂2h2 δu2

α
+ ϵ̂3h3 δu3

α

δ r⃗β = ϵ̂1h1δu1
β + ϵ̂2h2δu2

β + ϵ̂3h3δu3
β

Connect some characteristics of inside points with the boundary.

Curl



  

d S⃗ = δ r⃗α
×δ r⃗β

= ∣ ϵ̂1 ϵ̂2 ϵ̂3
h1 δu1

α h2 δu2
α h3 δu3

α

h1 δu1
β h2 δu2

β h3 δu3
β ∣

X ( F⃗ ) . d S⃗ = X 1h2h3[δu2
α
δu3

β
−δu3

α
δu2

β
]

−X 2h1h3[δu1
α
δu3

β
−δu3

α
δu1

β
]

+X 3h1h2[δu1
α
δu2

β
−δu2

α
δu1

β
]

Try writing RHS in this form and compare.
The co-efficients of the arbitrary displacments must agree

Curl

!! BE VERY CLEAR ABOUT THE SIGN OF EACH QUANTITY !!



  

Consider the pair of paths(1 →2)and (3→4)

F⃗ .δ l⃗ |1 →2 = F1h1δu1
α
+F 2h2δu2

α
+F 3h3 δu3

α

F⃗ .δ l⃗ | 3→4 = [F ihi+(∇ F ih i) .δ r⃗
β ](-δu i

α) (i=1,2,3)

Write contributions from F⃗ .δ l⃗ | 2→3  & F⃗ .δ l⃗ | 4→1similarly .

Full path gives: (∇ F⃗ .δ r⃗β) .δ r⃗α
− (∇ F⃗ .δ r⃗α) .δ r⃗β

= ∑
k , i [

1
hk

∂ F ihi

∂uk

δu i
β]hk δuk

α

−∑
k ,i [

1
hk

∂ F ih i

∂ uk

δui
α]hk δuk

β

=∑
k ,i [

∂ F ih i

∂ uk

−
∂ F k hk

∂ ui ]δui
β
δuk

α

Curl

Work out the 
intermediate 
steps as an 
exercise 



  

Now compare the co-efficient of δu2
α
δu3

β
−δu3

α
δu2

β

We need to put i=3,k=2 and then i=2,k=3

this gives X 1h2h3=[∂ F3h3

∂ u2

−
∂ F2h2

∂ u3 ]

Curl

So X ( F⃗ ) =
1

h1h2h3 ∣ h1 ϵ̂1 h2 ϵ̂2 h3 ϵ̂3
∂
∂ u1

∂
∂u2

∂
∂ u3

h1F 1 h2 F 2 h3F 3 ∣ ≡ {
∇×F⃗
curl F⃗
rot F⃗

We have ∬∇× F⃗ . d S⃗=∮ F⃗ . d l⃗ (called Stoke ' s theorem)

Now break a finite surface into small area elements
Line integral from neighbouring perimeters of two
infinitesimal area elements will cancel
Only line segments which form the part of the perimeter will not cancel



  

SEM, electron optics, mass-spectrometer 
   How well can you ''see'' the nano-world? 
   How well can measure & identify masses/ion-fragments?

Magnetic field also satisfies the laplacian... etc
Del^2 phi =0 appears in many places
Current flow in a conductor : why is it a similar problem?

Boundary value problems are everywhere.....

Note: there is no such thing as 2D electrostatics. 2D 
electrostatics means that the third co-ordinate can be droppped 
due to aspect ratio etc. 

Who needs electrostatics anyway ?



  

The Laplace equation

The mean value theorem
Poisson formula (for 2D boundary value problem)
Conformal mapping
Significance of the cylindrical co-ordinate
Off-axis expansion (electrostatic lensing)
Bessel functions 



  

A scalar functionV ( r⃗ ) satisfies ∇
2V = 0

Consider a SPHERE of radius R : integrate∇ 2V over the volume

∫
vol

∇⃗ .(∇⃗ V )d τ = ∫
surface

∇⃗V . d S⃗

= ∫ [ϵ̂r
∂V
∂ r

+ϵ̂θ

1
r

∂V
∂θ

+ϵ̂ϕ

1
r sinθ

∂V
∂ϕ

] . d S⃗

= ∫∂V
∂ r

R2 sinθd θd ϕ

0 = R2∂
∂ r

∫
surface

V (r ,θ ,ϕ)sin θd θd ϕ

The average value 〈V (θ ,ϕ)〉r over a sphere is independent of r.
In the limit r →0,we must have 〈V 〉=V (0)
So average value over a spherical surface = value at the center

Write the gradient in spherical polar

Only the radial component survives 
because dS  points radially outwards

In 2D one can do BETTER than this...we will see soon.

The mean value theorem



  

There are no maxima or minima of V in a region where ∇
2V=0

But there canbe saddle points

No stable equilibrium possible in purely electrostatic field (Earnshaw)
All extremal values must occur at the boundary

V=const on ALL points on ALL boundaries ⇒V is constant everywhere

UNIQUENESS: There is only one possible solution of ∇ 2V=−
ρ
ϵ0

consistent with a given boundary condition

e.g V = x2 - y2

Think of the gradient 
near maxima/minima

An obvious consequence



  

∇
2V=

1
r

∂
∂ r (r ∂V

∂ r )+1

r2

∂
2V

∂θ2
=0

This  gives:

r 2d
2 R

d r2 +r
dR
dr

−m2 R=0

trial solution R=Arn  gives : n=±m ,so

V (r ,θ) = ∑
m (Am r

m+
Bm

rm )e±i mθ

Special case   m = 0 : R=A0+B0 ln r

Full soln  : V (r ,θ)= (A0+B0 ln r ) + ∑
m≠0(Am r

m
+
Bm

rm )e±i mθ

Try : V=R(r )e imθ

Why not   emθ?

The 2D polar solution → Poisson formula



  

∇
2
ϕ=0

ϕ(r ,θ)=?V (r ,θ) = ∑
-∞

∞

Am r
|m |ei mθ

Am =
1

2π
∫
0

2π

f (α)e−i mαd α

V =
1

2π
∑
-∞

∞

∫
0

2π

f (α)e−imα r |m|ei mθd α

Interchange integration and summation 
Add up the geometric series first....

The potential is f (θ)  on the unit circle.
Find the potential everywhere inside.

The Poisson formula



  

V (r ,θ) =
1

2π
∫
0

2π

d α f (α)( ∑
m=−∞

m=0

r |m |e im (α−θ) + ∑
m=0

m=∞

r |m |e im(α−θ)−1)
=

1
2π

∫
0

2π

d α f (α)( 1
1  - r e−i (α−θ)

+
1

1  - r ei (α−θ)
 - 1)

=
1

2π
∫
0

2π

d α f (α)(2 −2 r cos (θ−α)

1−2 r cos (θ−α)+r2 −1)

V (r ,θ) =
1

2π
∫
0

2π

d α f (α)( 1  - r 2

1−2 r cos (θ−α)+r2 )
A similar relation can be derived for r>1

The Poisson formula



  

u+i v = f ( x+i y)
∂u
∂ x

=
∂ v
∂ y

∂u
∂ y

= −
∂ v
∂ x

} ⇒ ∇ 2u (x , y) = 0
∇

2 v (x , y) = 0
(∇ u) .(∇ v ) = 0

Make guesses, visualize some function. If the boundary 
conditions match, uniqueness gurantees you have the solution.

It is useful to remember the ''equipotential contours'' of some 
functions...straight lines, circles, ellipses, hyperbola etc

Lines of u=const.  and v=const  are normal to each other

Using complex numbers



  

F (z) =
2V 0
π ln z

v (x ,0) = 0

v (0, y) =
2V 0
π

π
2

v( x , y) =
2V 0
π arctan( yx )

The solution satisfies Laplace's eqn & boundary conditions. So it 
must be the unique solution.

Modify the solution for an arbitrary angle between the two sides .

Question : How does the electric field ''lines of force'' look ? 

V=0

V
=
V

0

y

x

The potential given on a ''wedge''



  

W ≡ u+iv = cosh−1 z
x = coshu cosv
y = sinhu sin v
if u= const = cosh−1

α

x2

α2 +
y2

α2−1
=1

if v= const = cos−1
β

x2

β2
−

y2

1−β2
=1

These are CONFOCAL.

Elliptical and hyperbolic equipotentials



  

Observe the equipotentials. 
What problem can be solved
using this?

A slit and hyperbolic equipotentials



  

V=0V=V 0
x

y

2a
The slit width = 2 a extends in the xz -plane
V ( x , y)should satisfy

x2

cos2 πV
V 0

−
y2

sin2 πV
V 0

= a2

How do we scale the variables ?



  

Design your co-ordinate to suit a problem

Easy problem: A long copper pipe (circular cross section, 
radius a) is kept at a potential V.  What is the electric field 
everywhere? 

∇
2V=

1
r

∂
∂ r (r ∂V

∂ r )+1

r2

∂
2V

∂θ2
=0

Full soln  : V (r ,θ)= (A0+B0 ln r ) + ∑
m≠0(Am r

m+
Bm

rm )e±i mθ

V (a ,θ) = V 0 ∀ θ

V (r ,θ) = V 0(1+ ln
a
r )

.. .E r =
V 0

r
(r>a)

E θ = 0

r=a



  

Design your co-ordinate to suit a problem

Not so easy problem: A long copper pipe (elliptical cross 
section) is kept at a potential V.  What is the electric field 
everywhere? 

x2

2
+ y2

=1

Strategy : Design/find a co-ordinate system (u,v) in which 
u=constant or v= constant produces an ellipse.

See if Laplacian is separable in that (u,v) co-ordinate system.

Solve Laplacian, now you should get a tractable boundary value 
problem. It will not work in all cases...but in some cases.



  

The elliptical co-ordinate (u , v , z )

x = cosh u cos v
y = sinh u sin v
z = z }⇒hu=hv=√sinh2u+sin2 v

∇ . F⃗ =
1

huhv
[ ∂
∂u

(F uhv )+
∂

∂ v
(F v hu)]

∇
2V =

1
huhv [ ∂

∂u ( 1
hu

∂V
∂ u

hv)+ ∂
∂ v ( 1

hv

∂V
∂v

hu)]
∇

2V=0 ⇒
∂

2V

∂u2 +
∂

2V

∂ v2 =0 (a fortuitous case !!)

This means we can trivially write down the solution in (u,v)
By recalling the solution in simple cartesian (x,y)



  

The elliptical co-ordinate (u , v , z )

V (u , v ) = (A0u+B0)(C 0v+D0) +

∑
k=1

∞

(Ak cosh ku+Bk sinh ku) (C k sin kv+D k coskv )

u=cosh−1 √2 reproduces the required ellipse
V (cosh−1√2 , v) = V 0 ∀ v

⇒V (x , y )=
V 0

cosh−1 √2
u

We need to invert :   
x2

cosh 2u
+

y2

cosh2u−1
=1



  

The elliptical co-ordinate (u , v , z )

cosh 2u =
(x2

+ y2
+1)±√[(x−1)

2
+ y2 ] [(x+1)

2
+ y2 ]

2
≡ λ(x , y)

V ( x , y) =
V 0

cosh−1 √2
cosh−1√λ (x , y)

E x (x , y) =
V 0

2cosh−1√2

1

√λ (λ−1)
∂ λ
∂ x

E y (x , y ) =
V 0

2cosh−1√2

1

√λ (λ−1)
∂ λ
∂ y

Calculate the limiting forms for large x,y and fix the sign. Show that 
your recover the result for the circular pipe as expected..



  

The Z and W plane.

Angle between two trajectories at their point of intersection

Possibility of generating many orthogonal co-ordinates starting 
from cartesian

What is meant by ''conformal''



  

W ≡ u+iv =
z−i
z+i

( y ≥ 0)

x

y

u

v

−
2 x

x2
−1

= tan θ (on real line)

e iθ

z−z0

z+ z̄ 0

⇒?

Conformal map : upper half plane to unit circle



  

x

y

u

v
W ≡ u+iv = ln z ( y > 0)

v=π

v=0
u
=

-∞

Conformal map : upper half plane to a strip



  

We have a function of W=u+i v= f (x+i y)
And a function Φ(u , v)  such that

∂
2
Φ(u , v )

∂u2 +
∂

2
Φ(u , v )

∂ v2 = 0

now since we have  W = f ( z)
Φ(u , v ) = Φ(u(x , y ) , v (x , y ))

≡ ψ(x , y )

⇒
∂

2
ψ(x , y )

∂ x2 +
∂

2
ψ(x , y)

∂ y2 = 0

Notice the variables.   !!! It is NOT a trivial assertion !!!

How to use this ? The key fact.



  

Suppose we know how to solve a problem with a given 
boundary condition in the (u,v) plane.

Then, if we can find a ''conformal map'', that twists the 
boundary from the W-plane to a desired boundary in the z-
plane. The variables are now (x,y)

And somehow one of these two boundaries is ''simpler'' and 
the integral can be done exactly.

The theorem ensures that one solution can be exactly mapped 
into the other. Uniqueness gurantees that is the correct 
solution. 

Conformal map the algorithm for using it

Remember : There is NO set recipe for finding the correct map !!!



  

ψ(x , y) ≡ Φ(u (x , y) , v (x , y))
∂ψ

∂ x
= ∂Φ

∂u
∂ u
∂ x

+∂Φ
∂v

∂ v
∂ x

∂
2
ψ

∂ x2 = [ ∂
∂ u (∂Φ

∂u )
∂ u
∂ x

+ ∂
∂ v (

∂Φ
∂u )

∂ v
∂ x ] ∂u

∂ x
+∂Φ

∂u
∂

2u

∂ x2

+[ ∂
∂u (∂Φ

∂ v )
∂ u
∂ x

+ ∂
∂ v (

∂Φ
∂ v )

∂ v
∂ x ] ∂ v

∂ x
+∂Φ

∂ v
∂

2 v

∂ x2

= ∂2Φ

∂u2 (∂u
∂ x )

2

+∂2 Φ

∂v2 (∂ v
∂ x)

2

+2 ∂2Φ
∂ u∂ v(

∂ u
∂ x

∂v
∂ x )

+ ∂Φ
∂u

∂
2u

∂ x2 + ∂Φ
∂v

∂
2 v

∂ x2

Why does the method work ?

∂ v
∂ x

=−
∂u
∂ y



  

Similarly.... 

∂
2
ψ

∂ y2
= ∂

2
Φ

∂ u2 (∂ u
∂ y )

2

+∂
2
Φ

∂ v2 (∂ v
∂ y)

2

+2 ∂
2
Φ

∂ u∂v (∂ u
∂ y

∂v
∂ y )

+ ∂Φ
∂u

∂2u

∂ y2 + ∂Φ
∂ v

∂2 v

∂ y2

Adding the two & using the Cauchy-Riemann relations...

∇
2
ψ = ∇

2
Φ[(∂ u

∂ x )
2

+(∂ u
∂ y )

2

] + 2 ∂
2
Φ

∂u∂ v
(∇ u ). (∇ v)

+ ∂Φ
∂ u

∇
2u + ∂Φ

∂ v
∇

2 v

= 0
 = 0 

 = 0  = 0 

 = 0 

Φ  is harmonic in (u , v)→ Ψ  is harmonic in ( x , y )

∂ v
∂ y

=
∂u
∂ x



  

STEP 1: The transformation...

W =
z−z0

z− z̄0

where z0≡x+iy

STEP 2: What happens to any point  (λ ,0)   the real line ?

e iθ
=

λ−(x+iy)
λ−(x−iy)

    :  define   f (θ)=ϕ(λ ,0)

Suppose the potential is known on the x -axis.
Given  ϕ(λ ,0) ,  How can you find  ϕ(x , y )  ?
Strategy:  Transform the real line  unit circle 
Ensure that (x , y)  is the center of the circle.

Using the conformal map



  

STEP 3 : relate d θ =
2 y

(λ−x )
2
+ y2 d λ

STEP 4

ϕ(x , y ) =
1
2π

∫
0

2π

f (θ)d θ

=
1
2π i

∫
-∞

∞ (z−z̄ 0)ϕ(λ ,0)

(λ−z0)(λ− z̄0)
d λ

ϕ(x , y ) =
1
π ∫

-∞

∞ y ϕ(λ ,0)

(x−λ)
2
+ y2

d λ

A closed form expression in terms of the boundary values.
But it will NOT help in solving for slits, apertures etc

Using the conformal map



  

What happens to 
| z | = 1
| z | = 2
| z | = 3

when transformed by

W=z+
1
z

Deforming circles to straight 
line and confocal ellipses

A more complex map : the Jukowski map



  

Transforming   | z−z0 |=|1−z0 |

z0=−0.2+0.2 i z0=−0.1+0.1 i
Deforming 
circles to 
aerofoil



  

  Cylindrical co-ordinate system
   Off-axis expansion
    How electrostatic lensing works 
    Bessel functions



  

∇
2V =

1
ρ

∂
∂ρ (ρ∂V

∂ρ )+1

ρ2

∂
2V

∂θ2
+

∂
2V

∂ z2
= 0

∂V
∂ρ +ρ

∂
2V

∂ρ
2 +ρ

∂
2V

∂ z 2 = 0

If the beam does not 
change the potential

Axially symmetric

If V(0,z) is known the complete potential & trajectory can be determined.

First solve a generic problem for axially symmetric solution of laplace eqn

∂V
∂ρ

+ρ
∂

2V

∂ρ
2

+ρ
∂

2V

∂ z 2
= 0

V (ρ , z ) = ∑
n=0

∞

A2n( z)ρ
2n

V (0, z ) = A0(z )

∑
n=1

∞

A2n(z ) .2n .ρ
2 n−1

+∑
n=1

∞

A2n (z) .2n .(2n−1) .ρ2n−1
+∑

n=0

∞

(d
2

dz2 A2n(z ))ρ2n+1

Can couple even powers to even powers only.
Consider the powers of r. 
First & second term  will reduce power by 1.
Third term increases the power by 1.
No coupling between rn  and rn+1 possible.

Potentials with axial symmetry 



  

∑
n=1

∞

A2n(z ) .2n .ρ
2 n−1+∑

n=1

∞

A2n (z) .2n .(2n−1) .ρ2n−1+∑
n=0

∞

(d
2

dz2
A2n(z ))ρ2n+1

Consider the coefficient of ρ

A2(2+2.1)+A0 ' ' ( z) = 0 ⇒ A2 = −
A0

' '

4
Consider the coefficient of ρ3

A4(4+4.3)+A2 ' ' (z ) = 0 ⇒ A4 =
A0

' ' ' '

64

The series solution is then : 

V (ρ , z ) = V (0, z) −
V ' ' (0, z )

4
ρ

2
+

V ' ' ' ' (0, z )
64

ρ
4

− .....

E r = −
∂V
∂ρ

=
1
2

ρV ' ' (0, z )

E z = −
∂V (0, z )
∂ z

=−V ' (0, z )

Correct to first order 
Terms of order  r2  and higher dropped

Can you write the general 
term in the expansion ?

Try to find the pattern of the 
coefficients.

(−1)
n

(n ! )2 (
ρ

2)
2n

A0
(2n)

(z )

Potentials with axial symmetry : E r  andE z



  

optical refraction :n1sinθ1=n2sinθ2

v1 || = v2||

Choose ϕ = 0  position, so that
mv2

2
+qϕ=0 ⇒v∝√ϕ

√ϕ1

v1

v1 || =
√ϕ2

v2

v2||

√ϕ1sinθ1 = √ϕ2sinθ2

square root of √ϕ → refractive index

Electrons and light : Bethe's observation 



  

optical refraction :n1sinθ1=n2sinθ2

Electrons and light : Bethe's observation 



  

Equipotentials near gapped cylinders...  Sise et al Eur. J. Phys. 29 (2008) 1165–1176

The einzel lens starts and ends at 
the same potential.

The einzel (= single) lens 



  

Useful for 
correcting 
astigmatic
error 
features in 
images.

Quadrupole lens : NOT axially symmetric



  

∇
2V =

1
ρ [ ∂

∂ρ(ρ ∂V
∂ρ )+ ∂

∂θ(
1
ρ

∂V
∂ θ )+ ∂

∂ z (ρ ∂V
∂ z )]

=
1
ρ

∂
∂ρ (ρ∂V

∂ρ )+1

ρ
2

∂2V

∂ θ
2 +

∂2V

∂ z2 = 0

V (ρ ,θ , z) = R(ρ)Φ(θ)Z (z )

Separate out Φ

1
R
d 2R

d ρ2
+

1
Rρ

dR
d ρ

+
1

Φρ2

d 2
Φ

d θ2
+

1
Z

d 2Z

dz2
= 0

ρ2

R
d 2 R

d ρ
2 +

ρ

R
dR
d ρ

+
ρ2

Z
d 2 Z

dz 2 = −
1
Φ

d 2Φ

d θ
2 = m2

Φ(θ)=Φ(θ+2nπ) : .. .Φ∼e±i mθ : m=0,±1,±2. ...

Separation of variables:
Standard method

Formal solution in (ρ ,θ , z )  co-ordinate



  

Separate out Z ( z)

1
R
d 2 R

d ρ
2 +

1
Rρ

dR
d ρ

−
m2

ρ
2 = −

1
Z

d 2Z

dz2 = −k 2

The sign of k 2
⇒ Z (z →∞)=0

The Radial equation : 

d 2R

d ρ
2

+
1
ρ
dR
d ρ

+ (k 2
−
m2

ρ
2 )R=0

If m=0,k=0{
R = (A0+B0 lnρ)

Φ = const
Z = (C0+D0 z)

ρ→∞

d 2R

d ρ
2

+k2 R ≈0

⇒oscillation : 
infinite polynomial

ρ→0

ρ
2d

2 R

d ρ
2 +ρ

d R
d ρ

+m2R≈0

⇒ R∼ρ
±m

Separation of variables in (ρ ,θ , z )



  

d 2 R

d ρ
2 +

1
ρ
dR
d ρ

+ (k2
−
m2

ρ
2 )R = 0 (with x=k ρ)

x2d
2 R

dx2 + x
dR
dx

+ (x 2−m2)R = 0

R = xm∑
0

∞

a j x
j

(x−m not well behaved at x=0)

co-efficient of xm : a0 arbitrary choice

co-efficient of xm+1 : a1(2m+1)=0 : ⇒a1=0

co-efficient of xm+2

a2 [(2+m)
2
−m2 ]=−a0 : ⇒a2=

−1
2.(2m+2)

a0

Only alternate powers will be there in the series

Solving the radial equation in (ρ ,θ , z )



  

co-efficient of xm+4

a4 [(4+m)
2
−m2 ]=−a2 : ⇒a4=

(−1)2

2.4 .(2 m+2)(2m+4)
a0

co-efficient of xm+6

a6 [(6+m)
2
−m2 ]=−a4 : ⇒a6=

(−1)3

2.4 .6 .(2 m+2)(2m+4)(2 m+6)
a0

a2 j=(−1)
j m!

22 j j ! ( j+m) !
a0 →

(−1)
j
Γ(m+1)

22 j j !Γ( j+m+1)
a0

Allow fractional values of  m   &  choose a0=
1

2m
Γ(m+1)

J m(x )=(x2 )
m

∑
j=0

∞ (−1) j

j !Γ( j+m+1) (
x
2 )

2 j How do we know 
this converges 
for any x ?

Series solution of the radial equation



  
Each of them have infinite number of roots.
No two roots ever coincide except at x=0. (!)

As x→∞

J m(x ) ≈ √ 2
π x

cos( x −
2m+1

4
π)

+ O( 1

x3/2 )

How do Bessel functions look ?



  

k J 0( x) J 1(x) J 2( x) J 3(x ) J 4(x) J 5( x)
1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

The zeros of Bessel functions



  

J m(x )  and J−m( x)are linearly independent EXCEPT 
 if m  is an integer

J−m(x ) = (x2 )
−m

∑
j=0

∞ (−1)
j

j !Γ( j−m+1) (
x
2 )

2 j

= (x2 )
−m

∑
j=m

∞ (−1)
j

j ! ( j−m) ! (
x
2 )

2 j

= (x2 )
−m

∑
j '= j−m=0

∞ (−1)
( j '+m)

( j '+m) ! j ' ! (
x
2 )

2 ( j '+m)

=  (−1)m(x2 )
m

∑
j '=0

∞ (−1)
j '

( j '+m)! j ' ! (
x
2 )

2 j '

=  (−1)m Jm( x)

Factorial of 
negative integer is 
infinite !

The second independent solution



  

The second independent solution (Neumann) 

π N m( x) = lim
ν→m

[∂ J ν

∂ν
−(−1)ν∂ J−ν

∂ν ]

π N 0(x ) = 2 J 0(x) ln(γ x
2 )−2∑

j=1

∞ [(−1)
j

( j ! )2 (x
2

4 )
j

∑
l=1

j

(1
l )]

γ = Euler's constant = lim
n →∞[(∑k=1

n
1
k )−ln n]

The derivative with respect to the order of the function may look 
unusual but  it is possible because the order of the Bessel function 
is defined for any  number. 

The derivative requires the use of digamma functions 

The Neumann solutions are singular at zero. The singularity is 
logarithmic for m=0, power law like for m=1,2,3...

The independent solution for m=0  and integers 

See the ref material for 
more details



  

Define f (n) ≡∫
0

∞

xn e− xdx

∫
0

∞

xn e−x dx =
xn+1

n+1
e−x | 0

∞
+

1
n+1

∫
0

∞

xn+1e− x dx

(n+1) f (n)= f (n+1) ...Exactly like a factorial.

f (0) = ∫
0

∞

x0e−x dx = 1 :( recall   0 !=1)

f (n) = ∫
0

∞

xn e−x dx converges only if n>−1

1
f (n)

→0  if   n ≤−1 is 
1
n !

for n=0,1,2,3...

= 0 if n > -1

Generalisation of factorial

Factorial of negative integers is  infinity (∞)



  

The Sturm-Liouville differential equation: 
d
dx [ p( x)

dF
dx ] + [q( x) + μ r (x )]F = 0

∫
x1

x2

r (x )Fμ 1(x )F μ 2(x)dx = 0 (μ1≠μ2)

The interval ( x1 , x2)   has the boundary condition 

a F ( x1)+b F ' ( x1) = 0
c F ( x1)+d F ' (x2) = 0 {a ,b , c ,dare real constants

eigenvalue weighting function eigenfunction

orthogonality

sin, cos, Legendre are simple, Bessel needs a bit more work

The orthogonality of Bessel functions



  

Sturm Liouville →Bessel

d
dx [ p (x)

dF
dx ] + [q (x) + μ r ( x)]F = 0

d
d ρ [ρdFd ρ ] +    [−m2

ρ + k2
ρ]F = 0

Orthogonality → ∫
ρ1

ρ2

ρ F (k1ρ)F (k2 ρ)d ρ = 0

The eigenvalue comes from k  NOT from  m.
So, solutions corresponding to different k will be orthogonal.
For different 'm', we will get a different set of functions. 



  

Recall the substituion  we made.....  x=k ρ
At ρ = a

J m(α
ρ

a ) = J m(β
ρ

a ) = 0 if α ,β are zeros of J m

The choice k=α
a

leads to 

1
ρ

d
d ρ [ρ d

d ρ
J m(

α
a

ρ)] + (α2

a2 −
m2

ρ
2 ) J m(

α
a

ρ) = 0

Multiply both sides by ρ J m(β

a
ρ) : integrate over (0,a )

Then start with k=
β

a
and multiply both sides by ρ J m(

α
a

ρ)
Then subtract the two results...

The orthogonality of Bessel functions



  

The orthogonality

(α
2
−β

2
) ∫

0

a

ρ J m(
α
a

ρ)J m(βa ρ)d ρ = 0

The Normalisation

∫
0

a

ρ Jm(
α
a

ρ) Jm(
α
a

ρ)d ρ =
a2

2
[ J m+1(α)]

2

Expanding an arbitrary function

f (ρ)=∑
n=1

∞

An Jm(
αn

a
ρ) (αnis the nth zero  of J m)

An=
2

a2 [ J m+1(αn)]
2 ∫

0

a

ρ f (ρ)J m(
αn

a
ρ)d ρ

The orthogonality of Bessel functions



  

Geometrically they have similarity to sin /cos



  

Assuming V (ρ ,θ , z) is finite at ρ=0 and is zero at ρ=a

V (ρ ,θ , z) =     ∑
m=0

∞

∑
n=1

∞

J m(kmnρ){sinh kmn z
cosh kmn z}×

(Amn cosm θ+Bmn sinm θ)

where kmn=
xmn

a
( xmn : n th zero of Jm( x))

Depending on how the boundary conditions have been 
provided, one may need to re-write the form of the 
expression, chose exponential, sinh, cosh etc.

Finally : summary of the solution in (ρ ,θ , z )



  

Spherical Polar co-ordinate

Y lm(θ ,ϕ) = √ 2l+1
4 π

(l−m)!
( l+m)!

P l
m
(cos θ)e imϕ

V (r ,θ ,ϕ) = ∑
l=0

∞

∑
m=−l

m=l

[Almr
l

+
Blm

rl+1 ]Y lm(θ ,ϕ)

Generally one finds the coefficients by matching 
the function on some given spherical surface  r=R

Reminder : summary of the solution in (r ,θ ,ϕ)



  

A tubular lens : solving for the potential

z →∞−∞ ← z

z

z=0Very small gap

R R
Φ= −V 0 Φ= V 0

Inside the tube   Φ=R(ρ)Z (z )

∂
2
Φ

∂ρ
2

+
1
ρ

∂Φ
∂ρ

+
1

ρ
2
∂

2
Φ

∂θ
2

+∂
2
Φ

∂ z 2
= 0

1
R
d 2R

d ρ
2

+
1
Rρ

dR
d ρ

=−
1
Z
d 2Z

dz 2
= const=k 2

Φ(ρ , z →∞)  is finite ⇒Z (z )∼ak e
ikz

+bk e
−ikz

⇒ k 2
>0

Z ( z)∼e±|k | z  cannot work in this case



  

A tubular lens : Bessel fn with imaginary arg

The radial solution must be
1
R
d 2R

d ρ
2 +

1
Rρ

dR
d ρ

− k 2 = 0

compare with 

ρ
2d

2 R

d ρ
2

+ ρ
dR
d ρ

+ (k 2
ρ

2
−m2

)R = 0 } ⇒{
We need  
m=0
k → ik

Solution : Φ(ρ , z ) ∼ ∑
k

(ak e
ikz

+bk e
−ikz) J 0(ikρ)

Φ(0, z)  is finite ⇒no N 0(ikρ)  in solution 
There is nothing to force discrete k

⇒Φ(ρ , z )=
1

2π
∫
−∞

∞

A(k ) J 0(ikρ)e ikz dk ≡
1

2π
∫
−∞

∞

F (ρ , k )eikz dk



  

A tubular lens : Bessel fn with imaginary arg

Since Φ(R , z )  is known, we can invert the Fourier transform :

F (R ,k ) = ∫
−∞

0

(−V 0)e
−ikz dz + ∫

0

∞

(V 0)e
−ikz dz

=
2V 0

ik
∫
0

∞

sin udu  where : u ≡ kz

= lim
α →0

2V 0

ik
∫
0

∞

e−α u sinudu =
2V 0

ik

⇒Φ(ρ , z ) =
V 0
π ∫

−∞

∞ J 0(ik ρ)

ik J 0(ikR)
eikz dk

Note : J 0(ikρ) = ∑
j=0

∞ (−1)
j

j ! 2 (ik ρ

2 )
2 j

= ∑
j=0

∞ 1

j !2( k ρ

2 )
2 j

NOT
oscillatory



  

Use a script to generate the potential and plot... 

//Scilab script
function y=pot(rho,z), 
y=(0.5/atan(1))*integrate('sin(k*z)*besseli(0,k*rho)/
    (besseli(0,k)*k)','k',0.001,50), 
endfunction
clf()
rhorho = linspace(-1,1,50);
zz = linspace(-1,1,50);
set(gcf(),"color_map",jetcolormap(128))
drawlater();
zminmax = [-1 1]; colors=[0 255];
colorbar(zminmax(1),zminmax(2),colors)
Sfgrayplot(rhorho, zz, pot, strf="041", 
zminmax=zminmax, colout=[0 0], colminmax=colors)
xtitle("tubular lens, V=-1 and V=1")
drawnow();
show_window()



  

A tubular lens : plot of Φ(ρ , z )

Notice the 
''lens'' shaped 
curves of the 
electrostatic 
potential



  



  

Green's function in electrostatics



  

V=
Q

4πϵ0

1
r V=

Q
4πϵ0

(1
r
−

1
R)

R R

a

Q
Q Q

? ?

V=
Q

4πϵ0(
1

√(x−a)
2
+ y2

−
R
a

1

√(x−R
a )

2

+ y2)

The center of the sphere is 
taken as the origin.
The xy plane only considered

Boundary condition 
changes the form 
of the solution in 
non-trivial ways.

Charge distribution and boundary condition



  

Some operator Some func F1 x1

Some func F2 

x2

Build up RHS by 
assembling spikes of 
different heights.
Like breaking up an 
integral into rectangles

Add F1, F2, F3.....to 
build up LHS

Some func F3 

x3

[Operator ]G( x−x ')=−δ(x−x ' )

We assume that 
superposition works...

Can add to G any function that gives RHS = 0

Delta function is a ''simple'' thing in k-space.

What does a Green's function do ? 



  

Begin with two arbitrary functions ψ(r ) ,ϕ(r )

∇ .(ϕ∇ ψ) = ϕ∇
2
ψ + ∇ ψ .∇ ϕ

∇ .(ψ∇ ϕ) = ψ∇
2
ϕ + ∇ ϕ .∇ ψ}

∫
vol

(ϕ∇
2
ψ−ψ∇

2
ϕ)d τ=∮

surf

(ϕ∇ ψ−ψ ∇ ϕ) . d S⃗

Now make     
the choice {ψ=G where ∇

2G (r−r ' )=−δ(r−r ' )

ϕ=Φ where ∇
2
Φ=−

ρ
ϵ0

∫
vol

[Φ (−δ(r−r ' ))−G(− ρ
ϵ0 )]d τ=∮

surf
[Φ ∂G

∂ n
−G ∂Φ

∂n ]d S

How do we put these together ?



  

Make a choice G=0   on the surface S (Dirichlet)

∫
vol

(Φ [−δ(r−r '))−G (−ρ
ϵ0 )]d τ=∮

surf
(Φ∂G

∂ n
−G∂Φ

∂ n )d S
interchange the role of r  and r '

Φ(r )=
1
ϵ0

∫
vol

G (r−r ' )ρ(r ' )d τ ' − ∮
surf

Φ(r ' )
∂G
∂ n

d S '

The formal solution for potential when the charge distribution is 
given and the potential is specified on the surface S.

But we need to start solving for G in various geometries.

The form of G depends crucially on the boundary conditions!

Formal solution in terms of G (r−r ' )



  

Φ(r )=
1
ϵ0

∫
vol

G (r−r ' )ρ(r ' )d τ ' − ∮
surf

Φ(r ' )
∂G
∂ n

d S '

The first term gives the contribution of the volume charge.

But imposing a boundary condition (potential)  on S requires a 
(surface) charge distribution to be ''pasted'' on S. The second 
term results from that.

If there is no ''volume charge'', then the potential is entirely 
determined by the ''surface'' term. It can be calculated if we know 
the function G.

Interpretation of the terms



  

Can we make 
∂G
∂ n

=0   on the surface S ? !!NO !!

∫
vol

(Φ [−δ(r−r '))−G (−
ρ
ϵ0 )]d τ=∮

surf
(Φ∂G

∂ n
−G∂Φ

∂ n )d S
∫
vol

∇ .(∇G )d τ=∫
vol

∇
2G d τ = ∮

surf

(∇G ) . d S⃗=∮
surf

∂G
∂ n

dS

∂G
∂ n

= −
1
S

: simplest choice

This choice is used in heat flow related problems. However 
''mixed boundary value'' problems do occur in electostatics. 
An example is an aperture in a metallic sheet.

Here S is the area of 
the bounding surface.

Any other possibility ? (von Nuemann...)



  

PROBLEM : The potential is given everywhere on a plane. It is 
not necessarily constant. How to solve for the potential 
everywhere?

∇
2G=−δ( x−x ')δ( y− y ' )δ( z−z ' ) : G=0  if z=0

Dimension of G (for Laplacian) is  [L]  in 1D ,
dimensionless in  2D ,[L]

−1  in 3D. Why?

The simplest image charge problem in disguise !
Point charge above a ''grounded'' conducting plane. 

G( r⃗−r⃗ ' ) =
1

4π( 1

√(x−x ' )2
+( y−y ' )2

+(z−z ')2
−

1

√(x−x ' )2
+( y− y ' )2

+(z+z ' )2 )

G( r⃗− r⃗ ' )    for a plane



  

∂G
∂ n

=−
∂G
∂ z '∣z '=0 = −

1
2π

z

[(x−x ' )2
+( y−y ')2

+z2 ]
3/2

Why is the direction of n̂ along −z ' ?

Φ( r⃗ )=
1
ϵ0

∫
vol

G(r−r ' )ρ(r ' )d τ ' − ∮
surf

Φ(r ' )
∂G
∂ n

d S '

Φ( r⃗ )=
z

2π
∫
−∞

∞

∫
−∞

∞

dx ' dy '
Φ( x ' , y ' )

[(x−x ' )2
+( y− y ' )2

+ z2 ]
3 /2

The potential must be specified everywhere...no holes or slits!
The divergence theorem that we used as our starting point, 
holds only if the surface is closed......

G( r⃗− r⃗ ' )    for a plane



  

An image charge problem, really...

Dr '=a2 Q '=−
a
r '

Q

∇
2G=δ( r⃗−r⃗ ')

G=
1

4π ( 1

∣⃗r−r⃗ ' ∣
−

a /r '

∣⃗r−D⃗ ∣)
since r⃗ '   and  D⃗  are in  same direction 

G=
1

4π ( 1

√r2
+r ' 2

−2 r r ' cos γ
−

1

√(rr ' /a2
)+a2

−2 r r ' cos γ )

Normal derivative 
∂G
∂ n

={
∂G
∂ r '∣r '=a

for r<a

−
∂G
∂ r ' ∣r '=a

for r>a

r⃗ '

G=0a

D⃗
r⃗ γ

 r  and  r'  are 
interchange-
able. Why?

G( r⃗− r⃗ ' )   for a sphere 



  

∂G
∂ n

= {
1

4 π

a−r2
/a

(r2
+a2

−2a r cos γ)
3/2 (r>a )

1
4 π

r 2/a−a

(r2+a2−2a r cos γ)
3/2 (r<a )

cos γ = cosθ cosθ '+sin θ sin θ ' cos (ϕ−ϕ ' )

Expressed in spherical harmonics for many calculations.....

1

∣⃗r−r⃗ '∣
= {∑l=0

∞ 4π

2 l+1( r l

r ' l+1)Y lm(θ ,ϕ)Y lm
*

(θ ' ,ϕ ') (r<r ')

∑
l=0

∞ 4π

2 l+1( r ' l

r l+1)Y lm(θ ,ϕ)Y lm
*
(θ ' ,ϕ ' ) (r>r ' )

G( r⃗− r⃗ ' )   for a sphere and spherical harmonics



  

G=
1

4π ( 1

∣⃗r−r⃗ ' ∣
−

a /r '

∣⃗r−D⃗ ∣)  where  D=
a2

r '

1

∣⃗r−r⃗ '∣
= {∑l=0

∞

∑
m=−l

l
4π

2 l+1( r l

r ' l+1)Y lm(θ ,ϕ)Y lm
* (θ ' ,ϕ ' ) (r<r ' )

∑
l=0

∞

∑
m=−l

l
4π

2 l+1( r ' l

r
l+1)Y lm(θ ,ϕ)Y lm

*
(θ ' ,ϕ ' ) (r>r ' )

a /r '

∣⃗r−D⃗∣
= ∑

l=0

∞

∑
m=−l

l
4π

2 l+1
1
a (rr 'a2 )

l

Y lm(θ ,ϕ)Y lm
* (θ' ,ϕ ' )

∂G
∂ r ' ∣r '=a

=
1

a2 ∑
l=0

∞

∑
m=−l

l

(ra )
l

Y lm(θ ,ϕ)Y lm
* (θ ' ,ϕ ' )

G( r⃗− r⃗ ' )   for a sphere and spherical harmonics



  

Φ( r⃗ )=
1
ϵ0

∫
vol

G(r−r ' )ρ(r ' )d τ ' − ∮
surf

Φ(r ' )
∂G
∂ n

d S '

for r<a

Φ( r⃗ )=∑
l ,m

(ra )
l

Y lm(θ ,ϕ)∮
surf

d Ω ' Y lm(θ ' , ϕ ')Φs(θ ' ,ϕ ' )

for r>a

Φ( r⃗ )=∑
l ,m

(ar )
l+1

Y lm(θ ,ϕ)∮
surf

d Ω ' Y lm(θ ' ,ϕ ')Φs(θ ' , ϕ ')

Why is the form different for ''interior'' and ''exterior'' points ?

''Multipole form'' is useful in telling us the dominant nature of the 
variation of the potential.

G( r⃗− r⃗ ' )   for a sphere and spherical harmonics



  

You would have noticed that the functions appearing in the Green's 
functions are the same functions frequently seen in eignefunction 
problems. What is the connection ?

Basic fact: We know that any function can be expanded using the 
''complete'' and ''orthonormal'' set of eignefuctions → So we should 
be able to expand a delta-fn also in a similar way.

Where does this lead to?

Consider an operator eigenfunction :  Lun(x )=λnun(x )

∑
n

Anun (x)= f (x)=δ(x−x ' )

Solve for An

Eignefunction expansion of a δ  function



  

∫
a

b

∑
n

Anun( x)um(x)dx = ∫
a

b

δ (x−x ' )um(x )dx

∑
n

An ∫
a

b

un( x)um( x)dx = um(x ' )

∑
n

Anδmn = um(x ' )

δ(x−x ' ) = ∑
n

un( x)un (x ' )

Correct
normalisation
assumed

So the RHS of a Green's function can be expanded in 
eigenfuctions for each delta function. The LHS can also be 
written in terms of eigenfunctions. The solution is guaranteed but 
not the most handy  expression in many cases.

Eignefunction expansion of a δ  function



  

The image charge trick works for a ''long''/infinite cylinder 
as a boundary. It does NOT work for a finite sized cylinder .

Cross section of the 
(hollow) cylinder.

The red dots are ''line 
charges'' extending 
normal to the plane of the 
paper..

r⃗ '
a

D⃗G=0

Consider the function

g=ln (∣⃗r−r⃗ '∣)−ln (∣⃗r−D⃗∣)
ln    is a solution of Laplace eqn in 2D polar

Two line charges perpendicular to the xy 
plane , produce circular equipotentials in 
the xy-plane.  Utilise this....

G( r⃗− r⃗ ' )   for a long cylinder



  

g = ln (∣⃗r−r⃗ ' ∣)−ln (∣⃗r−D⃗ ∣)

=
1
2

ln(a
2
+r ' 2−2a r ' cos γ

a2
+D2

−2a D cos γ ) if  r=a

=
1
2

ln(r ' 2

a2 ×

a2

r ' 2
+1−2

a
r '

cos γ

1+
D 2

a2 −2
D
a

cos γ ) choose   
D
a

=
a
r '

= ln(r 'a ) subtract this from g  to get G (ρ=a )=0

Introduce the usual cylindrical polar (ρ ,θ)  variables

G = −
1
2π

ln(√ρ
2
+ρ ' 2

−2ρρ ' cos (θ−θ ')

√(ρρ ' /a)
2
+a2

−2ρρ ' cos(θ−θ ' ) )

G( r⃗− r⃗ ' )   for a long cylinder



  

∂G
∂ n

= −
∂G
∂ρ '∣ρ '=a + =

1
2π

a−ρ2/a

ρ
2
+a2

−2aρ cos (θ−θ' )
(ρ>a)

∂G
∂ n

=
∂G
∂ρ '∣ρ '=a =

1
2π

ρ2/a−a

ρ
2
+a2

−2aρ cos (θ−θ' )
(ρ<a)

Φ(ρ ,θ) = -∮Φ(θ ' )
∂G
∂ n

ad θ '

=
1

2π
∮

0

2 π

Φ(θ ' )
a2−ρ2

ρ2+a2−2aρ cos (θ−θ ' )
d θ '

This is exactly the Poisson integral formula, as expected

G( r⃗− r⃗ ' )   for a long cylinder



  

∫
vol

δ( r⃗−r⃗ ' )d τ=1 must hold

∫
vol

δ(ρ−ρ ')
ρ δ(θ−θ ' )δ(z−z ' )d ρρd θdz

In general, for u1,u2,u3

d τ = h1h2h3d u1d u2d u3

δ( r⃗−r⃗ ' ) =
δ(u1−u1 ')

h1

δ(u2−u2 ' )

h2

δ (u3−u3 ')

h3

It is possible to integrate out angular co-ordiantes if there is no angle 
depndence of the functions that are being dealt with.  For example

δ( r⃗−r⃗ ' ) →
1

4π r2 δ(r−r ' ) in  (r ,θ ,ϕ)with only  r  dependence

What should a δ  function look like in (ρ ,θ , z )?



  

z=0

z=L

ρ=a

We need to solve

∇
2G = (∂∂ρ

2 +
1
ρ

∂
∂ρ +

1

ρ
2
∂

∂ θ
2 +∂

∂ z 2 )G
= −

δ(ρ−ρ ')
ρ δ (θ−θ ')δ(z−z ')

G = 0 on all surfaces of the cylinder

G=R(ρ ,ρ ' )Φ(θ ,θ ' )Z (z , z ' ) works.....
But we are NOT going to get
decoupled equations like 

( ) R(ρ ,ρ ' ) =
δ(ρ−ρ ' )

ρ

( )Φ(θ ,θ ' ) = δ(θ−θ ')
( ) Z ( z , z ' ) = δ(z−z ' )

The RHS will be zero for 
decoupling the equation, but 
each equation will be solved 
twice...once each for two 
sides of the delta-fn

G( r⃗− r⃗ ' )   for the interior of  finite cylinder



  

d 2

dz 2
Z (z , z ' )−k 2Z (z , z ' )=0 Solution

Z k={Ak (z ')sinh kz + Bk ( z ' )cosh kz (0<z< z '<L)

C k (z ')sinh kz + Dk ( z ' )cosh kz (0<z '<z<L)

Z k (0, z ') = 0 ⇒ Bk (z ')=0

Z k (L , z ' ) = 0 ⇒ C k (z ' )=−
cosh kL
sinh kL

Dk ( z ' )

G is continous at z ' ⇒ Ak ( z ' )=D k (z ' )
sinh k (L−z ')

sinh kz ' sinh kL

So, except one all coefficients have been solved for. 
What condition should determine that?

G( r⃗− r⃗ ' )   for the interior of  finite cylinder



  

Z k={D k (z ' )
sinh k (L−z ')

sinh kz ' sinh kL
sinh kz (0<z<z '<L)

D k (z ' )
sinh k (L−z )
sinh kL

(0<z '<z<L)

How do we use the symmtery Z(z,z') = Z(z',z) ?
If we interchange the values of z and z', then the solution 
for z < z' must produce the  solution for z > z'

D k (z )
sinh k (L−z )

sinh kz sinh kL
sinh kz '=D k (z ' )

sinh k (L−z )
sinh kL

Z k={
sinh k (L−z ' )
sinh kL

sinh kz (0< z<z '<L)

sinh k (L−z )
sinh kL

sinh kz ' (0< z '<z<L)

G( r⃗− r⃗ ' )   for the interior of  finite cylinder



  

Repeat exactly the same process for the Φ(θ ,θ ') part
d 2

d ϕ
2
Φ(θ ,θ ' )−m2

Φ(θ ,θ ')=0  gives

Φ=cosm(θ−θ ') (m=0,±1,±2,. ....)

The radial part 

ρ
2d

2

d ρ
2
R+ρ

d
d ρ

R+(k 2
ρ

2
−m2)R=0 is solved by

R(ρ ,ρ ' )={Am(ρ ') J m(k ρ) 0<ρ<ρ '<a
C m(ρ ') J m(k ρ) 0<ρ '<ρ<a

N m(ρ=0)   diverges. So not part of the solution .

G( r⃗− r⃗ ' )   for the interior of  finite cylinder



  

Continuity  at  ρ=ρ '
Symmetry ρ⇔ρ '
R(ρ=a ,ρ ' )=0 }⇒

R(ρ ,ρ ' ) = Jm(k ρ ' )J m(k ρ)

k =
xmn
a

: nth zero of  J m(x)

The full solution is obtained by combining 

G( r⃗ , r⃗ ')= ∑
m=−∞

∞

∑
n=1

∞

Amn J m(kmnρ ') J m(kmnρ)Z (z , z ' )cosm(θ−θ ' )

The coefficients Amn  will ensure the δ functions  on RHS

For δ (θ−θ ' ) : multiply both sides by cos pθ and integrate

G( r⃗− r⃗ ' )   for the interior of  finite cylinder



  

For δ(θ−θ ' ) : allow the θderivative to work
then multiply both sides by cos p(θ−θ ' ) and integrate

∑
mn

Amn∫
0

2π

(∂
2

∂ρ
2
+

1
ρ

∂
∂ρ

+
1

ρ
2
(−m2

)+∂
2

∂ z2 )RΦ Z cos p(θ−θ ' )d θ=

−∫
0

2π
δ(ρ−ρ ' )

ρ δ(θ−θ ' )δ (z−z ' )cos p (θ−θ ' )d θ

∑
n

π Apn(∂
2

∂ρ
2
+

1
ρ

∂
∂ρ

−
m2

ρ
2

+∂
2

∂ z 2 )R(ρ ,ρ ' )Z (z , z ' ) =

δ(ρ−ρ ' )
ρ δ(z−z ')

For δ(z−z ' ) : integrate both sides between z±ϵ

G( r⃗− r⃗ ' )   for the interior of  finite cylinder



  

∑
n

π Apn ∫
z '−ϵ

z '+ϵ

(∂∂ρ
2
+

1
ρ

∂
∂ρ

−
p2

ρ
2

+∂

∂ z2 )RZ dz =

∫
z−ϵ

z+ϵ

dz[−δ(ρ−ρ ')
ρ δ(z−z ')]

∑
n

π Apn R(dZdz ∣
z '+ϵ

−
dZ
dz ∣

z '−ϵ
)=−

δ(ρ−ρ ' )
ρ

These terms cannot contribute to the integral becuase Z(z.z') is 
continous at z=z'.
So only contribution can come from the z-derivative, becuase Z has a 
DIFFERENT functional form for z<z' and z>z'

G( r⃗− r⃗ ' )   for the interior of  finite cylinder



  

Z k={
sinh k (L−z ' )
sinh kL

sinh kz (0<z< z '<L)

sinh k (L−z )
sinh kL

sinh kz ' (0<z '<z<L)

(dZdz ∣
z+ϵ

−
dZ
dz ∣

z−ϵ
)=−k=(x pn

a )
∑
n

Apn Rπ(−x pn

a )=−
δ(ρ−ρ ' )

ρ

∫
0

a

d ρ ρ J p(x pq

a
ρ)∑

n

Apn J p( x pn

a
ρ ') J p(x pn

a
ρ)π(x pn

a )=
∫
0

a

d ρρ J p( x pq

a
ρ)δ(ρ−ρ ' )

ρ = J p( x pq

a
ρ ' )

R(ρ ,ρ ') = J m(k ρ ' ) Jm(k ρ)

G( r⃗− r⃗ ' )   for the interior of  finite cylinder



  

∑
n
(π x pn

a )Apn J p( x pn

a
ρ ' ) ∫

0

a

d ρ ρ J p(x pq

a
ρ)J p(x pn

a
ρ)=J p( x pq

a
ρ ')

Using ∫
0

a

d ρ ρ J p(x pq

a
ρ) J p(x pn

a
ρ)=a2

2
J 2

p+1 (x pn )δnq

We get the solution for A pn

Apn =
1

π a2 k pn

1

J 2
p+1(k pn a)

, p=0, k pn=
x pn

a

=
2

π a2 k pn

1

J 2
p+1(k pn a)

p ≥1

G( r⃗ , r⃗ ' )=
1

πa
∑
p=0

∞

∑
n=1

∞ (2−δ p0)

x pn [ J p(k pnρ ' )J p(k pnρ)

J 2
p+1(x pn) ]Z ( z , z ')cos p(θ−θ ' )

G( r⃗− r⃗ ' )   for the interior of  finite cylinder



  

PART 2:

Energy, momentum and force in 
electromagnetism

E,D,B,H

Wave propagation, reflection & refraction



  

δW M = ∫
all vol

ρ( E⃗+ v⃗×B⃗). v⃗ δ t d τ

dW M

dt
= ∫ E⃗ . j⃗ d τ

=
1
μ0
∫( E⃗ .∇× B⃗)d τ − ∂

∂ t
∫
ϵ0 E2

2
d τ

= −
1
μ0
∫∇ .( E⃗×B⃗)d τ +

1
μ0
∫ B⃗ .(∇× E⃗)d τ

− ∂
∂ t
∫
ϵ0 E2

2
d τ

Conservative field  → KE +  PE (scalar potential) conserved.
EM fields are in general not conservative, so what is conserved?

So may be  : KE of particles + ''something'' will be conserved ?

Work done on the charges=
Force x displacement (integrated over all vol)

Use ∇×B⃗ = μ0 j⃗+ϵ0μ0

∂ E⃗
∂ t

to replace j⃗

∇ .( E⃗× B⃗) = B⃗ .∇×E⃗ − E⃗ .∇×B⃗

Energy conservation



  

dW M

dt
= −

1
μ0
∫∇ .( E⃗×B⃗)d τ +

1
μ0
∫ B⃗ .(∇× E⃗)d τ

− ∂
∂ t
∫
ϵ0 E2

2
d τ

= −
1
μ0
∫∇ .( E⃗×B⃗)d τ− ∂

∂ t
∫(ϵ0 E2

2
+

B2

2μ0
)d τ

.. .
d
dt [W M+∫

vol
(ϵ0 E 2

2
+

B2

2μ0
)d τ] = − 1

μ0
∫
surf

∇ .( E⃗×B⃗)d τ

compare with ∇ . j⃗+
∂ρ

∂ t
= 0 : OR : 

dQ in

dt
= −∫

surf

j⃗ . d a⃗

Energy conservation



  

We find that the EM field contains energy and we can identify the 
energy flux/flow/current term as well.

Natural question: Can we do the same for momentum of the particles? 
This is  more invloved, becuase momentum is a vector and forming the 
continuity equation for a vector would require a ''tensor''.

Apart from that the reasoning is very similar... 

d
dt
∑
all

p⃗ i = F⃗ = ∫
all vol

ρ( E⃗+ v⃗× B⃗)d τ

= ∫[(ϵ0∇ . E⃗ ) E⃗ + (∇×B⃗
μ0
−ϵ0
∂ E⃗
∂ t )×B⃗]d τ

Momentum conservation



  

d
dt
∑
all

p⃗ i = F⃗ = ∫
all vol

ρ( E⃗+ v⃗× B⃗)d τ

= ∫[(ϵ0∇ . E⃗ ) E⃗ + (∇×B⃗
μ0
× B⃗−ϵ0

∂ E⃗
∂ t
×B⃗)]d τ

Since : (∇×B⃗)× B⃗ = ( B⃗ .∇) B⃗−∇
B2

2

And : (∂ E⃗
∂ t )×B⃗ = ∂

∂ t
( E⃗×B⃗) + E⃗×(∇×E⃗)

= ∂
∂ t
( E⃗× B⃗)−[( E⃗ .∇) E⃗−∇

E2

2 ]

Momentum conservation



  

RHS becomes :

ϵ0[(∇ . E⃗) E⃗+( E⃗ .∇) E⃗−∇
E 2

2 ] + 1
μ0 [(∇ . B⃗) B⃗+( B⃗ .∇) B⃗−∇

B2

2 ]−1

c2
∂
∂ t
( E⃗× B⃗)
μ0

The integrand is now   symmetric in E and B although the 
initial expression was not. The extra term we have added 
is div B which is always zero.

d
dt [ ∑particles

p⃗ i +
1

c2 ∫ S⃗ d τ] = ∫[ϵ0{(∇ . E⃗) E⃗+( E⃗ .∇) E⃗−∇
E 2

2 } +
1
μ0 {(∇ . B⃗) B⃗+( B⃗ .∇) B⃗−∇

B2

2 }]d τ
Question : Is RHS the divergence of something? Then the form of 
the continuity equation will emerge again.

But the RHS is already a vector, so it can only be the divergence of 
tensor (if at all)

S = E x B 
emerges again 

Momentum conservation



  

[(∇ . E⃗ ) E⃗+( E⃗ .∇) E⃗−∇
E2

2 ] i

=
∂E j

∂ x j

E i+E j

∂ Ei

∂ x j

−
1
2
∂E2

∂ x i

= ∂
∂ x j
(E i E j−δij

E 2

2 )
Hence entire RHS integrand is a divergence of the following

T ij = ϵ0(E i E j−δij

E2

2 )+1
μ0 (Bi B j−δij

B2

2 )

Repeated index j is 
summed over, there is no 
summation over i

d
dt [ ∑particles

p⃗i+
1

c2∫ S⃗ d τ] = −∫
vol

∇ . (−T )d τ = −∫
surf

(−T ) . d a⃗

compare with
d
dt

Qinside = −∫
vol

∇ . j⃗ d τ = −∫
surf

j⃗ . d a⃗

Q: Why would 
you call it a 
stress tensor?

Momentum conservation



  

In any material there are huge number of charges (nucleii + 
electrons).  A complete description of the electrodynamics of 
a ''material'' should take these into account!

This is the exact ''microscopic'' description. In this 
description there is only E, B and fundamental constants. 
There is no D and H. (see Classical Electrodynamics , sec 
6.7 – 6.9 : J.D. Jackson) 

This is clearly impractical. So we invent some ways of 
retaining the form of the Maxwell's equations, but introduce 
some paramters and very few  new variables. 

It works well for many cases (refractive index for light is a 
very good example.) It will not work when the atomistic 
''discreteness'' is important (X-ray diffraction)

Electrodynamics and materials



  

The average description relies on modelling the 
''charge/magnetisation neutral'' background as something 
that develops a small electric/magnetic dipole moment.

The ''bound charge'' and ''bound currents'' that we talk about 
are essentially these dipoles. For this approach to work it 
must be easy to separate out what is ''bound'' and what is 
free. This Maxwell's equations do not tell us. We have to 
decide.

Linear dependence of polarizability and magnetisation is not 
necessary but simplifies the formulation a lot 

Electrodynamics and materials



  

∇ . E⃗ =
ρTOTAL
ϵ0

⇒ ∇ .ϵ0 E⃗ = ρ free+ρpol

since ρpol=−∇ . P⃗ , we can write

∇ .[ϵ0 E⃗+P⃗ ] = ρ free OR ∇ . D⃗= ρ free

Use the proprotionality of P⃗ with E⃗ :

P⃗=ϵ0χ E⃗ (This is phenomenological)

ϵ0(1+χ) E⃗ = ϵ E⃗ = D⃗ (Linear material)
Quantities like D, e can only be defined in an average sense.
Makes sense if averaged over a few (~10 -100) lattice units. 
 
!! One cannot talk about D or  e  inside an atom!! 

The definition of D⃗



  

∇× B⃗ = μ0 J⃗ = μ0( J⃗ f + J⃗ b) ''Free'' current put in by 
wires, solenoids etc.

''Bound“ current due to 
induced or frozen 
magnetic dipoles

J⃗ b=∇×M⃗ hence

∇×(B⃗μ0
−M⃗ ) = J⃗ f

call
B⃗
μ0
−M⃗ = H⃗

∇× H⃗ = J⃗ f

∇ . H⃗ = ?

A proportionality between M and H is  a material property.  

B⃗ = μ0(H⃗+ M⃗ )

M⃗ = χ H⃗
B⃗ = μ0(1+χ) H⃗

B⃗ = μ H⃗

χ is called susceptibility
μ is called permeability
Maxwell's equation does NOT tell 
you how to distinguish ''free'' and 
''bound'' current.

The definition of H⃗



  

Consider an insulator, so there are no free charges in the material

D⃗ = ϵ E⃗ ∇ . D⃗ = 0
B⃗ = μ H⃗ ∇ . B⃗ = 0

Magnetisation and electric polarisation can simultaneously 
change. So the ''bound'' current will result from change in M as 
well as P. 

σb=P⃗ . n̂ : Then consider P⃗→ P⃗+δ⃗ P
This change causes some amount of charge to flow in/out

δQ = δ( P⃗ . n̂)δa hence J⃗ p . δ⃗a =
δQ
δ t
=
∂ P⃗
∂ t

. δ⃗a

Total bound current flow J⃗ b = ∇×M⃗ +
∂ P⃗
∂ t

Maxwell's equations with  E⃗ , D⃗ , B⃗ , H⃗



  

∇×B⃗ = μ0 J⃗ total + ϵ0μ0
∂ E⃗
∂ t

∇×[μ0( H⃗+M⃗ )] = μ0[ J⃗ f+∇×M⃗ +
∂ P⃗
∂ t ]

+ μ0
∂
∂ t
[ D⃗−P⃗ ]

∇×H⃗ = J⃗ f +
∂ D⃗
∂ t

∇ . D⃗ = ρ f ∇×E⃗ =−
∂ B⃗
∂ t

∇ . B⃗ = 0 ∇× H⃗ = J⃗ f +
∂ D⃗
∂ t

Maxwell's equations with  E⃗ , D⃗ , B⃗ , H⃗



  

What happens to : U = ∫
vol
( ϵ0 E2

2
+

B2

2μ0
)d τ

We still expect energy to be a quadratic function of the field strength.

Suppose we change E(x,y,z) by a small amount dE(x,y,z)  and ask the 
question : How much work has been done in the process?

But the question really is ''How much work has been done on/by the 
free charges?“ This is because the ''free charge'' is what the 
experimenter can control.  

Mathematically the ''functional derivative'' of U w.r.t. E is the answer to 
the question. We can show that the function D treated as a function of 
E is the answer. It can be taken as a definition of D too.

From the Energy point of view



  

δU = ∫
vol

f ( E⃗ ) .δ E⃗ d τ ( E⃗ → E⃗ + δ E⃗ )

= ∫
vol

f ( E⃗ ) .(−∇ δV )d τ ( E⃗=−∇ V )

= ∫
vol

[δV ∇ . f⃗ − ∇ .( f⃗ δV )]d τ

= ∫
vol

δV ∇ . f⃗ d τ −∫
surf

f⃗ . d S⃗

Second term →  zero if we take the volume large enough such that the 
fields have all gone to zero. 

First term: identify f(E) = D .  Then div D should gives the free charge 
density and the expression gives the increase in energy of the free 
charges .

Treat  D⃗  as a functional derivative



  

δU = ∫
vol

f ( B⃗) .δ B⃗ d τ ( B⃗→ B⃗ + δ B⃗)

= ∫
vol

f ( B⃗) .(−∇× E⃗ )δ t d τ (∇×E⃗=−
δ B⃗
δ t )

= ∫
vol

[ E⃗ .∇× f⃗ − ∇ .( f⃗ ×E⃗ )]d τ

= ∫
vol

E⃗ .∇× f⃗ d τ −∫
surf

f⃗ × E⃗ . d S⃗

Second term →  zero if we take the volume large enough such that the 
fields have all gone to zero. 

First term identify f = H .  Then  curl f should gives the free current 
density and the expression gives the increase in energy (work done on)  
of the free current .

Treat  H⃗  as a functional derivative



  

All currents contribute to curl B, but only the external current 
(typically current in wires/coils) contributes to curl H. It is 
tempting to say that H  is the field that would exist if the 
magnetic materials  were not put in there. This is NOT in 
general correct. 

If the sample is  long and cylindrical then it is correct, but for 
NO other shape. The complete solution, when a sample is 
placed in an ''initially uniform'' field is possible for a sphere and 
a few other shapes.

However, the statement ''H  is the field in a medium“ is 
WRONG !!

In cases where ''permanent magnets'' are there, it is more 
complex. In fact in a permanent magnet H and B may point in 
opposite directions. 

Important to remember  about H⃗  and B⃗



  

δU = ∫
vol

[ D⃗ .δ E⃗+H⃗ .δ B⃗ ]d τ

If D⃗=ϵ E⃗ and B⃗=μ H⃗

U = ∫
vol
[ϵ2 E⃗ . E⃗+

μ

2
H⃗ . H⃗ ]d τ

= ∫
vol

1
2
[ D⃗ . E⃗+ H⃗ . B⃗ ] d τ

u =
1
2
[ D⃗ . E⃗+ H⃗ . B⃗ ]

A very commonly 
used expression. 
But this works 
for linear media 
only. 

Holds for 
linear or 
non-linear 
medium

The expression for linear media



  

In general ϵ  and μ  are tensors (3×3)  matrices

⇒u=
1
2
[ E⃗ ϵ E⃗ .+H⃗ μ H⃗ ]

Energy conservation in a case with H⃗=const
∂ u
∂ t
+ ∇ .( E⃗× H⃗ ) = 0

∑
ij

ϵij

2 [E i

∂E j

∂ t
+E j

∂ E i

∂ t ] − E⃗ .
∂ D⃗
∂ t

= 0

∑
ij

ϵij+ϵ ji

2
E i

∂ E j

∂ t
− ∑

ij

ϵij E i

∂ E j

∂ t
= 0

⇒ϵij=ϵ ji (similar proof for μij=μ ji)

ϵ  and μ  are in general symmetric tensors 

No time 
dependance



  

Viewpoint 1: The speed of light has been slowed down by a 
factor of n (the refractive index) .So momentum will REDUCE 
by a factor of n, like that of any classical ''particle''

Viewpoint 2: The wavelength of light has changed from l to 
l/n. So the wavevector (k) must have become LARGER in 
magnitude. We know that momentum is proportional to the 
wavevector, hence momentum should INCREASE ?

What about momentum ?



  

In most media ϵ0→ϵ  but  μ=μ0  holds very well 

p⃗EM =
S⃗
c2=

1
c2 (E⃗× B⃗

μ0 )→{ ϵ0μ0

E⃗×B⃗
μ0

→ D⃗×B⃗

1

c2 E⃗×
B⃗
μ0

→
1

c2 E⃗×H⃗

They are equivalent in vacuum but not in a medium !

Consider the plane monochromatic wave

E⃗ = E0 x̂ cos
2π
λ
( z−vt )

H⃗ = H 0 ŷ cos
2π
λ
( z−vt )} H 0 =

E0

vμ0

PHASE
VELOCITY!

The momentum of light in a medium



  

u =
1
2
(ϵE2
+μ0 H 2) = ϵ

2
E0

2 〈cos2 2π
λ
(z−vt)〉×2

=
1
2
ϵ E0

2
= N ℏω ⇒ E0

2
=

2 N ℏω
ϵ

The energy is equally distributed in E and B fields
N  is the number of photons per unit volume

〈 p⃗EM 〉 = 〈 D⃗×B⃗ 〉 = ϵE 0

E0

v 〈cos2 2π
λ
(z−vt )〉

= ϵ
E0

2

v
1
2

= ϵ
v

2 N ℏω
ϵ

1
2

= (cv )
N ℏ ω

c
= n(N ℏωc ) proposed by 

Minkowski (1908)

The momentum of light in a medium



  

〈 p⃗EM 〉 =
1

c2 〈 E⃗×H⃗ 〉 = ϵ0μ0 E0

E0

vμ0
〈cos2 2π

λ
(z−vt )〉

= ϵ0

E0
2

v
1
2

=
ϵ0
v

2 N ℏω
ϵ

1
2

= (ϵ0ϵ )n
N ℏω

c
=

1
n (

N ℏω
c )

proposed by 
Abraham (1909)

The difference actually points to the limitation of the macroscopic 
description of a medium composed of discrete atoms.

At the atomic level the electromagnetic field and atomic motion is 
mixed up inseparably.  One must consider the EM field + atoms 
system and write out the expression for total momentum. 

The ''Abraham'' or ''Minkowski“ result makes sense only if the 
''matching piece'' of atomic motion is included. 

The momentum of light in a medium



  

Viewpoint 1: The speed of light has been slowed down by a 
factor of n (the refractive index) .So momentum will REDUCE 
by a factor of n, like that of any classical ''particle''

Viewpoint 2: The wavelength of light has changed from l to 
l/n. So the wavevector (k) must have become LARGER in 
magnitude. We know that momentum is proportional to the 
wavevector, hence momentum should INCREASE ?

Question : Can one design an experiment to ask this 
question ? Simply immersing a mirror in a ''medium'' and 
measuring recoil does not answer this question – because 
atoms of the medium would keep hitting the mirror all the time!

Semiclassically the same question can be asked



  

x=
0

t=0

t=δ t

L

L

δ x
Light pulse (energy E) enters a perfectly transparent 
(no reflection) block of some material   at t=0 and 
leaves the block at t=dt . By how much does the 
block move? Should it go forward or backward?

M

E

E

n

n

''No reflection'' condition can 
be achieved by making a 
graded structure, where the 
refractive index varies from 1 
to n at the left edge and then 
from n to 1 at the right edge.

The block sits on a frictionless 
surface.pulse width≪L

Proposed by
Balazs (1953)

A thought experiment



  

The answer depends on the momentum of the pulse when it was 
inside the block. Why ?

pout = Mv + p in

δ x =
pout−pin

M ( L+δ x
c /n )

δ x =
L n
Mc (

E
c
−p in)

Block stops moving when 
pulse leaves because light 
takes away all the momentum

So measuring the displacement would tell what pin was ?  
Question : Can the block move rigidly on such timescales?

Block starts moving when 
pulse enters becuase total 
momentum must be 
conserved.

The position of the leading 
edge of the block when 
pulse leaves the block.

`

A thought experiment



  

References for some in-depth discussion.. Notice that the papers are quite 
recent compared to how long Maxwell's equations have been around!

Momentum of Light in a Dielectric Medium
Peter W. Milonni and Robert W. Boyd
Advances in Optics and Photonics 2, 519–553 (2010)

Colloquium: Momentum of an electromagnetic wave in dielectric media
Robert N. C. Pfeifer, Timo A. Nieminen, Norman R. Heckenberg,
and Halina Rubinsztein-Dunlop
Reviews of Modern Physics, 79, 1197
Erratum: Colloquium: Momentum of an electromagnetic wave
in dielectric media 79, 1197 (2007) in vol 81 Jan 2009 issue

The enigma of optical momentum in a medium
Stephen M. Barnett and Rodney Loudon
Phil. Trans. R. Soc. A (2010) 368, 927–939

Note: These have a lot of detail and descriptions of the experiments tried to 
answer the question. These are for additional reading (not exam syllabus)

Momentum of light in a medium : references



  

The lattice & the ''free electrons“ bouncing around

How the two types of electrons (bound to atoms + free) respond to a 
field determine what the dielectric function will be.

In reality ''bound'' and ''free'' are two extremes. There can 
intermediates. But this will illustrate two important types of behaviour.

A bit of the microscopic picture



  

E = E0 cos(kx−ω t) ≈ ℜ(E0e−iω t)
M ẍ =−b ẋ − kx + q E 0cos (kx−ω t)

x (t) = ℜ x̃0e−iω t {γ= b
M

& ω0
2
=

k
M }

x̃0 =
q/M

(ω0
2
−ω

2
)−i γω

E0

Nq x̃0 = ϵ0[ Nq2/M ϵ0

(ω0
2
−ω

2
)−i γω ]E0 ⇒ P̃ = ϵ0 χ̃(ω)E0

Important : Wavelength is such that  kx varies very little over the 
length scale of interest. Ok for an atom/molecule  & light.....
But not for hard Xray, gamma ray etc!

Forced oscillation of the bound electrons



  

ϵ̃ (ω) = ϵ0[1 + Nq2

M ϵ0

1

√(ω0
2
−ω

2
)

2
+ γ

2
ω

2
e−iϕ]

tan ϕ =
γω

ω0
2−ω2 = {

≈0 for ω ≪ ω0

≈π
2

for ω ≈ ω0

→π for ω ≫ ω0

The sign change etc. are characteristic of any resonant response
But to get the dispersion we need to solve

∇2 ̃⃗E = ϵ̃μ0

∂
2 ̃⃗E

∂ t2 wavevector must become complex too

Getting the dispersion  [ω(k )relation ]



  

Ẽ (x ,t ) = E0 exp [i (k '+ik ' ' )x−ω t ]

= E0 e−k ' ' x exp [i (k ' x−ω t)]

Refractive index n(ω) =
c
ω Re (k )

Absorption coefficient  α(ω) = 2 Im(k )

In reality many resonance are scattered all over the spectrum 
for a real material. Since there are various kinds of atoms, 
bondings etc that are involved. We cannot write generalised or 
explicit solutions any more, but the origin of the variations are 
qualitateively explained by forced and moderately damped 
vibrations of the bound electrons. 

Significance of the real and imaginary parts of k



  

Silica glass (SiO2)

An example of the variation 



  

nq x̃ (t) =
nq2/m

(ω0
2
−ω

2
)−i γω

E0e−iω t

d
dt
(nq x̃ (t)) =

nq2

m
−iω

−ω
2
−iω/ τ

E 0e−iω t (γ→1 /τ )

̃j free(ω) =
n q2 τ

m
1

1−iω τ
E0e−iω t

=
σ0

1−iω τ
E0 e−iω t

This is the conventional ''Drude'' expression of the current, 
with dissipation set equal to inverse of ''relaxation time''.

Now the job is to get the total polarisation including the 
contribution of the free electrons and the lattice. 

When there is no restoring force



  

P̃tot = P̃ free + P̃bound

d P̃ tot

dt
=

d
dt

n free q ũ +
d P̃b

dt
ϵ0χ(ω)(−iω) Ẽ0 = σ (ω) Ẽ0 + ϵ0χb(ω)(−iω) Ẽ0

σ (ω)
ϵ0

= iω(χb−χtot )

χtot (ω) = χb + i
σ(ω)
ωϵ0

ϵtot (ω) = ϵb + i
σ(ω)
ω

ϵtot (ω) = ϵb + i ϵ0
ω p

2

ω(1 /τ−iω)
This relation between ϵ(ω)  and σ (ω)  is used in many forms.

Plasma freq :

ωp
2
=

ne2

m ϵ0

Adding free & bound contributions 



  

n2 =
ϵtot
ϵ0
=
ϵb
ϵ0
+ i

ωp
2

ω(1/ τ−iω)
τ∼10−14 sec ,ωp∼1016 Hz

The second term will dominate when ω<ω p

The expression will again become almost real when ω≫ω p

Waves will propagate through plasma when ω>ω p   with some loss
But at lower frequencies there can be near perfect reflection 

The role of Plasma frequency



  

z

x

y

E⃗ I = x̂ E I e i(kz+ω t)

H⃗ I = − ŷ
E I

c
ei (kz+ωt )

We assume the form of E and 
then calculate what H must be 
from the Maxwell's equations. 
It can be done otherwise also 
of course.

E || and H ||

are continuous
⇒ { E I+E R = ET

−E I+E R =−nET

E⃗T = x̂ ET ei (nkz+ω t )

H⃗ T = − ŷ
ET

c /n
ei (nkz+ω t )

E⃗ R = x̂ ER e i(kz−ω t )

H⃗ R = ŷ
E R

c
e i(kz−ω t )

Propagation at normal incidence 



  

∣ER

E I
∣

2

= ∣1−n
1+n ∣

2

& ∣ET

E I
∣

2

= ∣ 2
1+n ∣

2 Notice that a good 
metal reflects 
almost everything 
below a critical 
frequency. That  is 
why it is shiny.

The wave rapidly 
decays inside the 
the region where 
there are free 
electrons. A metal 
and a plasma 
behave in similar 
ways.

Plasma frequency 
of the ionosphere 
is several Mhz 
typically

Calculated from the derived relation... 



  

1015

To compare with the last figure notice that the axis here uses 
wavelength, not frequency, so the curve is flipped left-right.

Variation of reflectance with  λ



  

Reflection from ionosphere

Image : http://www.tpub.com/neets/book10/40e.htm

Note the very different carrier density. ω p∝√n



  

Reflection, refraction, evanescent waves



  

Reflection and refraction of light at an interface

Consider a boundary between two media 1 and 2
div D = 0,  → normal component of D must be continuous.
div B = 0, always (so normal component of B is continuous)
curl H has no singularities → tangential component of H is continuous
curl E has no singularities …tangnetial component of E is continuous 

D1
⊥ = D2

⊥ Hence ϵ1 E1
⊥ = ϵ2 E2

⊥

B1
⊥ = B2

⊥

H1
∥ = H 2

∥ Hence
B1
∥

μ1
=

B2
∥

μ2

E1
∥ = E2

∥

These boundary conditions govern the reflection and transmission 
of electromagnetic waves at an interface and hence the laws of 
reflection and refraction (optics)



  

Why can the frequency not change ?

Aeiax
+B eibx

= C eicx
∀ x

Then a = b = c
set x = 0 : this gives A + B = C

Now draw the three phasors when x≠0

Two sides of a traingle are together
greater than thethird side

The equality can only hold if
A , B , C arealong the same ray..
The phaseangle also must be same
implies a = b = c

This condition 
determines the 
length of the 
phasors, which 
must be satisfied 
at all times

Re

Im

A

BC

B

Then identify x → t   and a,b,c → w



  

The incident reflected and transmitted waves

1 2

θ
I
θ

R

θT

E⃗ I = E⃗0I exp [i( k⃗ I . r⃗−ω t)]

B⃗ I =
k̂ I× E⃗0I

v1

exp [i(k⃗ I . r⃗−ω t )]

E⃗R = E⃗0R exp[i( k⃗ R . r⃗−ω t)]

B⃗R =
k̂ R×E⃗0R

v1

exp[i( k⃗ R . r⃗−ω t)]

E⃗T = E⃗0T exp [i(k⃗T . r⃗−ω t)]

B⃗T =
k̂ T×E⃗0T

v2

exp [i(k⃗ T . r⃗−ω t)]

Notice how unit 
vectors have been 
used to fix the 
relative 
directions

y

x

z
We are 
looking at 
the z=0 
plane 
sideways

ω=∣⃗k∣v : Hence k I v1 = k R v1 = k T v2

k⃗ I . r⃗ = k⃗ R. r⃗ = k⃗T . r⃗ must hold ∀r on the z=0 plane



  

The laws of reflection and refraction

k I = k R =
v2

v1

k T in magnitude

(k I )x x+(k I )y y = (k R)x x+(k R) y y

(k I )x x+(k I )y y = (kT )x x+(kT )y y} ∀ x , y

The coefficients (y,z components) must be equal

                                    since two row/columns are identical.

The three vectors are co-planer   [Law of reflection and refraction]
In this case it is the x-z plane.

Since  | kI | = | kR |  and y components are equal, the other  (z) 
component is exactly reversed.
No other possibility can satisfy all these conditions.

y
x

z

k⃗ I . k⃗ R×k⃗ T=0



  

Consider the x  component
k I sinθI = k R sinθR = k T sinθT

θI = θR

sinθI

sinθT

=
v1

v2

=
n2

n1

We haven't really used the boundary conditions so far.
Only their format is sufficient to establish Snell's law !

The laws of reflection and refraction



  

Now generalise the problem....



  

The s (σ ) polarisation of the incident ray

k⃗ I = k I sinθI ŷ − k I cosθ I ẑ

k⃗ R = k Rsin θI ŷ + k R cosθI ẑ

k⃗ T = kT sinθT ŷ − k T cosθT ẑ

E⃗ I = E0I x̂ exp [i ( k⃗ I . r⃗−ω t )]
E⃗ R = E0R x̂ exp [i( k⃗ R . r⃗−ω t)]
E⃗T = E0T x̂ exp [i (k⃗ T . r⃗−ω t)]

∇×E⃗ = −μ1
∂ H⃗
∂ t

∇× H⃗ = ϵ1
∂ E⃗
∂ t

H⃗ I = −
E0I

v1μ1
(cos θI ŷ+sinθI ẑ ) exp [i (k⃗ I . r⃗−ω t)]

H⃗ R = −
E0R

v1μ1
(cosθI ŷ−sinθI ẑ ) exp [i( k⃗ I . r⃗−ω t)]

H⃗ T = −
E0T

v2μ2
(cosθT ŷ+sinθT ẑ ) exp [i( k⃗ I . r⃗−ω t)]



  

Solve for E0R  and E0T  in terms of E0I

There is no normal component of E →  three sets of equations.
Of these one would just reproduce Snell's law
Use the other two to do the job :

E0T

E0I

=
2μ2 v2 cosθI

μ2 v2 cosθI + μ1 v1cos θT

E0R

E0I

=
μ2 v2cos θI − μ1 v1 cosθT

μ2 v2 cosθI + μ1 v1cos θT

E0T

E0I

=
2μ2v2 cosθI

μ2 v2 cosθT + μ1 v1 cosθI

E0R

E0I

=
μ2 v2cos θT − μ1 v1 cosθI

μ2 v2 cosθT + μ1 v1 cosθI

σ

π



  

Full transmission of  π  pol : Brewster angle

https://commons.wikimedia.org/w/index.php?curid=2519325

μ1 = μ2

θ = arctan(n2

n1
)



  

Reflected and transmitted fractions 



  

x

z

y
n1

n2

θI θR

θT

E⃗

H⃗

k⃗ I
k⃗ R

k⃗ T

p component : 
Electric field is in 
the plane (yellow) 
defined by the 
three rays.

k 0=
ω
c
⇒ {

k⃗ I = k0 ( ŷ n1sin θI− ẑ n1 cosθI )
k⃗ R = k 0( ŷ n1 sinθR+ ẑ n1cosθR)
k⃗T = k 0( ŷ n2 sinθT− ẑ n2 cosθT )

Evanescent waves and total internal reflection



  

In total internal reflection we often say that the reflection is 
''complete''

But if E,B, are all zero in the other ''rarer'' medium it would be 
impossible to match the boundary condition as we just discussed. 

This is true irrespective of which polarisation (s, p) the incident wave 
might have. 

Thus something must exist in the second medium too!

The necessity of having evanescent field



  

Total internal reflection  
implies that this will be > 1

Which sign should be 
chosen ?

damped as z→−∞ propagates along y

In medium 2:sinθT=
n1

n2

sinθI (n1>n2 : TIR possible)

E⃗T = E⃗T0 exp[i (k0 n2sin θT y−k 0 n2 cosθT z−ω t ) ]
= E⃗T0 exp[i (k0 n1sinθI y−k 0 n2 cosθT z−ω t ) ]

cosθT =  ±√1−(n1

n2 )
2

sin2
θI

n2 cosθT =  ±i √n1
2sin2
θI−n2

2

E⃗T = E⃗T0 e
(k 0√n1

2sin2
θ I−n2

2) z
e
i (k0 n1 sinθI y−ω t )

Evanescent wave



  

The solution can be used to write  E,D and B,H using Maxwell's 
equation.

Since we have got solutions in both regions we can match the 
boundary conditions. EM boundary conditions must hold irrespective of 
whether the reflection is total or partial.

The wave propagates with the same wavevector it had in the other 
medium.

For practical values of refractive indices the wave will penetrate for 1-2 
wavelengths only.

If a detector or another interface is brought within this distance it will 
sense the fields of the evanescent mode.

Evanescent wave



  

References : D.J. Griffiths, chapter 8 (EM waves)

Wikipedia articles on Frsenel equations and Total internal reflection 
are both very good:

https://en.wikipedia.org/wiki/Fresnel_equations#Theory

https://en.wikipedia.org/wiki/Total_internal_reflection#Evanescent_
wave_(qualitative_explanation)

Evanescent wave



  

Potential formulation, moving charges  
and radiation



  

1. Potentials and gauge
2. Retarded potential
3. Point dipole and half wave antenna
4. Moving point charge (Leinard Wiechart factor)
5. Uniformly moving point charge
6. Accelerated point charge
7. Brehmstralung and Synchrotron radiation
8. Čerenkov radiation
9. Radiation retardation   



  

∇ . B⃗ = 0 ⇒ B⃗ = ∇× A⃗ always possible

∇× E⃗=−
∂ B⃗
∂ t

⇒ ∇×(E⃗ +
∂ A⃗
∂ t )=0

E⃗ +
∂ A⃗
∂ t

=−∇V The potential

∇ . E⃗=
ρ
ϵ0

⇒ ∇
2V+ ∂

∂ t
(∇ . A⃗) = −

ρ
ϵ0

The choice div. A = 0 leads to the Possion's equation. Poisson's 
equation has no time dependence into it. This implies that if the 
charge density changes, the potential must change instantaneously 
at all points. This cannot be correct in dynamic situations.

Q: What condition will relate dependent J and A ? 

The time dependent potential formulation 



  

∇×B⃗ = μ0 J⃗ +ϵ0μ0
∂ E⃗
∂ t

∇×∇×A⃗ = μ0 J⃗ + ϵ0μ0
∂
∂ t (−∂ A⃗

∂ t
− ∇ V )

∇ 2 A⃗ −
1

c2

∂
2 A⃗

∂ t 2
= −μ0 J⃗ + ∇(∇ . A⃗ +

1

c2

∂V
∂ t )

The choice

∇ . A⃗ +
1

c2

∂V
∂ t

= 0 ⇒

called Lorentz gauge
{∇

2 A⃗ −
1

c2

∂
2 A⃗

∂ t 2 = −μ0 J⃗

∇
2V −

1

c2

∂2V

∂ t 2 = −
ρ
ϵ0

The time dependent potential formulation 



  

∇
2V −

1

c2

∂
2V

∂ t 2 = −
ρ
ϵ0

Use the Fourier transform method 

ρ( r⃗ , t) =
1

2π
∫
- ∞

∞

ρ̃( r⃗ ,ω)e−iω t dω

V ( r⃗ , t ) =
1

2π
∫
- ∞

∞

Ṽ ( r⃗ ,ω)e−iω td ω} ⇒
∇

2Ṽ + ω
2

c2 Ṽ =−
ρ̃
ϵ0

=− g̃

Now solve for the Green's function

∇2G( r⃗ , r⃗ ' )+ω
2

c2
G( r⃗ , r⃗ ' )=−δ( r⃗−r⃗ ' )

spherical polar with  R=| r⃗−r⃗ ' |

∇
2
=

1

R2 [∂∂ R (R2∂
∂R )+

1
sinθ

∂
∂θ (sinθ ∂

∂θ )+ 1

sin 2
θ

∂2

∂ϕ
2 ]

No theta or phi 
dependence because we 
expect the solution to 
depend on the distance 
from the source only

How to solve this in the Lorentz gauge 



  

d 2G

dR2 +
2
R
dG
dR

+ω
2

c2 G = 0 (R≠0)

d 2

dR2
(GR)+ω

2

c2
GR = 0

G =
A
R
e±i(ω/ c)R

G ≈
A
R (1 ± iω

c
R −

1
2
ω

2

c2 R2
±....)

∫
small
sphere

d τ(∇ 2G + ω
2

c2 G) =− ∫
small
sphere

d τδ( r⃗−r⃗ ' )

To fix the constant  A, need to 
integrate both sides over a small 
sphere centered at R=0, with the 
delta fn in RHS

As  R→0

G ≈
A
R

−4π A 0 −1

How to solve this in the Lorentz gauge 



  

Ṽ ( r⃗ ,ω) =∫ d τ '(ρ̃( r⃗ ' ,ω)
ϵ0 )[ 1

4π | r⃗−r⃗ ' |
e±i(ω/ c) | r⃗−r⃗ ' |]

V ( r⃗ ,t ) =∫ d τ '
dω
2π

e−i ωt(ρ̃( r⃗ ' ,ω)
ϵ0 )[ 1

4π | r⃗−r⃗ ' |
e±i(ω/ c) | r⃗−r⃗ ' |]

=
1

4 πϵ0
∫ d τ '

1
| r⃗−r⃗ ' |

d ω

2π
e−iω t (ρ̃(r⃗ ' ,ω))[e±i (ω /c) | r⃗−r⃗ ' |]

=
1

4 πϵ0
∫ d τ '

1

| r⃗−r⃗ ' |

d ω

2π
e−iω t e±i(ω/ c) | r⃗−r⃗ ' |

ρ̃( r⃗ ' ,ω)

=
1

4 πϵ0
∫ d τ '

1

| r⃗−r⃗ ' |
ρ(r⃗ ' ,t±| r⃗−r⃗ ' |

c )
The retarded time arises naturally in Lorenz gauge solutions. It is not 
put in by some other considerations!

The retarded/advanced potential 



  

The solution for A will have similar dependence on J, component by 
component.

The solution appears to say that the ''information'' about a change of 
charge at r' reaches the point r with speed c. This is an attractive 
physical interpretation – but works only for the potentials. 

By the same logic, one might try to ''retard'' the solution for E and B 
and obtain the time dependent solution – IT DOESN'T WORK!

The actual E and B must be obtained by differentiating the potentials 
and they look very different. They may no longer fall off as 1/r^2  

The ''retarded'' integral for the potentials is often non-trivial to do.

However everything about ''radiation'' is contained in that retarded 
potential term! 

The retarded/advanced potential 



  

The most important consequence of certain time varying charge and 
current configurations is radiation. A part of the E and B fields fall off 
as 1/r – a strikingly different behaviour. 

These means that the Poynting vector integrated over a spherical 
surface may give a constant value as the r dependence of  E x B and 
the surface area would cancel each other. 

This outward energy flow is radiation from a source like a radio 
antenna or something else, like an accelerated charge.

The complete E and B fields created by an antenna/accelerating 
charge can be quite complicated. It is only one part that has the 1/r 
dependence. However this is the term which we would need to 
consider for calculating radiation. 

The part of the field that falls off as 1/r is called the radiation field.

Radiation



  

z '=−
l
2

−q0 cos (ω t)

q0cos (ω t )

↑ I=−q0 ω sin(ω t)

z '=
l
2

Overall electrically neutral

small size l≪
2π c
ω

far field l≪| r⃗ |

V ( r⃗ , t) =
q0

4πϵ0
[cosω(t−| r⃗−k̂ l /2 |

c )
| r⃗− k̂ l /2 |

−

cosω(t−| r⃗+k̂ l /2|
c )

| r⃗+k̂ l /2 | ]
Az( r⃗ ,t ) =

μ0

4π
∫

−l /2

l /2
I (z ' , t−| r⃗−k̂ z ' | /c)

| r⃗−k̂ z ' |
dz '

≈
μ0 I

4π

l
r

sinω(t−| r⃗ |
c ) where I=−q0ω

No moving or accelerating charges in this...

An oscillating (short) dipole



  

Question: Why did we not model the ''oscillating 
dipole'' as two charged balls on a spring ?  This 
must give the same answer but will involve 
calculating the retarded potentials and fields due to 
moving/accelerating charges. We will do that later.

First we need to approximate the distances involved

| r⃗±k̂ l /2| = r(1±
l

2 r
cosθ)

1

| r⃗±k̂ l /2|
=

1
r (1∓

l
2 r

cosθ)
Use these two to approximate V ( r⃗ , t)

θ r⃗

x

y

z

An oscillating (short) dipole



  

V ( r⃗ ,t ) =
q0

4πϵ0
[cos ω(t−| r⃗−k̂ l /2 |

c )
| r⃗−k̂ l /2 |

−

cosω(t−| r⃗+k̂ l /2|
c )

| r⃗+k̂ l /2| ]
Use binomial and small angle approximation 

≈
q0 l cosθ

4πϵ0 r [1r cosω(t−rc ) − ω
c

sinω(t−rc )]
The first term (∼1

r 2 )  will reduce to electrostatic dipole as  ω→0

The second term  (ω≠0)  falls off slowly 
This gives rise to  the radiation term as   r→∞

The scalar potential with time variation



  

Lorenz gauge : ∇ . A⃗ +
1

c2

∂V
∂ t

= 0

V ( r⃗ , t) =
q0l cosθ
4 πϵ0 r [1r cosω(t−rc ) − ω

c
sinω(t−rc )]

∂V
∂ t

=
q0l cosθ

4 πϵ0 r [−1
r
ω sin ω(t−rc ) − ω

2

c
cosω(t−rc )]

Az( r⃗ ,t ) =
μ0 I
4 π

l
r

sinω(t−rc ) where I=−q0ω

∂ Az
∂ z

=
1

c2 (−q0ω l

4πϵ0 )[−1

r 2

z
r

sinω(t−rc )+ω
r

cosω(t−rc )(−
z
r )]

Since  
z
r
=cosθ , the two expressions are identical

We could have used this to calculate V ( r⃗ , t)   from   A( r⃗ , t)

Is the gauge condition satisfied ?



  

B⃗ = ∇× A⃗ =
1

r2 sinθ∣ ϵ̂r r ϵ̂θ r sinθ ϵ̂ϕ

∂
∂r

∂
∂θ

∂
∂ϕ

A z cosθ −r A z sinθ 0 ∣
Br = 0
Bθ = 0

Bϕ =
μ0 I

4π

l
r

sinθ[ωc cos ω(t−rc ) +
1
r

sinω(t−rc )]
There is one term which falls off as   ∼

1
r

Bϕ=
μ0 I

4π

l
r

sinθ[ωc cosω(t−rc )]

Calculating E⃗  and B⃗  from V  and A⃗



  

E⃗ = −∇V−
∂ A⃗
∂ t

E r =
q l cos θ

4π ϵ0 r
2 [1r cos ω(t−rc ) − ω

c
sinω(t−rc )]

Eθ =
q l sinθ

4π ϵ0 r
2 [(1

r
−ω2

c2
r)cosω(t−rc )−ω

c
sinω(t−rc )]

Eϕ = 0

Only component that falls off as  ∼
1
r

:

Eθ = −
ql

4π ϵ0

ω2

c2

sinθ

r
cosω(t−rc )

Calculating E⃗  and B⃗  from V  and A⃗



  

Consider S⃗=
1
μ0
E⃗×B⃗ over a sphere with   R→∞

We only need to consider

Eθ = −
ql

4π ϵ0

ω2

c2

sinθ

r
cosω(t−rc )

Bϕ = −
μ0ql

4π
ω2

c
sin θ

r
cosω(t−rc )

∯
R

S⃗ . d a⃗ =
R2

μ0
∫Eθ Bϕ2π sinθd θ

=
q2 l 2

6πϵ0 c
3 ω

4cos2
ω(t−Rc )

〈P radiated 〉 =
1

4πϵ0

(ql)2
ω

4

3c3 =
2π

3 √
μ0
ϵ0 (

l
λ )

2 I 0
2

2

Both expressions 
are equivalent.

They  show two 
different ways of 
viewing the source 
of radiation. 

Either as a dipole 
or as a ''current 
element'' of an 
antenna.

I 0
=
−
q
ω

Power radiated by the dipole



  

No intensity along the axis.

Maximum intensity on the 
equitorial plane.

In the polar plot the radial 
distance is the magnitude of 
the quantity at a certain 
angle. 

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1085864

The far field pattern tells us how much the dipole is radiating.

The near field pattern will be necessary if we want to calculate the 
effect of one dipole on another nearby dipole.  (i.e. How would two 
antennas interfere, etc. ?)

Radiation pattern and antenna impedance



  

〈P radiated 〉=
1

4πϵ0

(ql)2
ω

4

3c3 =
2π
3 √

μ0
ϵ0 (

l
λ )
I 0

2

2

Radiated power =  Real part of Impedance × r.m.s. current

The quantity  √
μ0
ϵ0

≈377Ω sets the impedance scale

This is called the Radiation resistance of an antenna
This does NOT tell us the reactive part of the impedenance.
Also the result is correct only for  l≪λ

Antenna dimension 
D Reactive near field

≈0.62√D
3

λ

Radiative near field
Wavefront shape
keeps changing

Far field
(Fraunhoffer)

←−−−−−−−−−−−−
2D2

λ
−−−−−−−−−−−−→

Radiation pattern and antenna impedance



  

The short dipole result will not hold unless l≪λ .
l=λ/2    is a common configuration called a half wave antenna. 

But setting 
l
λ
=

1
2

 in the earlier formula won't work!

Also :  If l=λ   IT WILL NOT RADIATE AT ALL! Why?
For l>λ /2   some parts will start having oppposite currents....

Variants of the dipole antenna.

The half wave dipole



  

The ''short'' dipole that we analyzed can be used to build up a 
solution, if we know the current at each point of the dipole.

However the current at each point must be consistent with the ''near 
field'' produced by the other parts.

This makes the ''exact'' solution a difficult self-consistent problem. 

We generally assume a reasonable current pattern that goes to zero 
at the ends and is maximum at the feed-point.

It so happens that the ''numerically exact'' solution agree quite closely 
with the result from the profile shown.

The half wave dipole



  

z
'→ R = r−z ' cosθ (−λ

4
<z '<λ

4 )
l → dz ' I 0=−qω

r⃗R⃗

θ

I (z ' , t) = I 0sin ω t cos( 2π z '
λ )

Far field due to  a segment between z ' to z '+dz '

dEθ = ( I 0

4πϵ0 c )
sinθ

R
ω
c

cosω(t−Rc )cos( 2π z '
λ )dz '

dBϕ = (μ0 I 0

4π ) sinθ

R
ω
c

cosω(t− R
c )cos( 2π z '

λ )dz '

small dipole result derived earlier

Eθ = −
ql

4π ϵ0

ω
2

c2

sinθ

r
cosω(t− rc)

The half wave dipole



  

u =
2π z '

λ
R=r−z ' cosθ (change variables)

K = ∫
−π/2

π /2
1
R

cosω(t−Rc )cos udu

≈
1
r
∫

−π/2

π/2

cos[ω(t−rc )+ucosθ]cosudu (r ≫z ' )

=
1
r

cosω(t−rc ) ∫−π /2

π/2

cos (ucos θ)cos udu +

1
r

sinω(t−rc ) ∫−π/2

π/2

sin(u cosθ)cosudu

K =
2
r

cosω(t−rc )
cos(π/2cosθ)

sin2
θ

 = 0

The half wave dipole



  

Eθ = ( I 0

4 πϵc )K = ( I 0

2πϵc r )cosω(t−rc )
cos (π/2 cosθ)

sinθ

Bϕ = (μ0 I 0

4 π )K = (μ0 I 0

2π r )cosω(t−rc )
cos(π /2 cosθ)

sinθ

Integrating the Poynting vector over a large sphere

〈P radiated 〉 =
1

4 π √
μ0
ϵ0
I 0

2∫
0

π

(cos (π/ 2cos θ)
sinθ )

2

sin θd θ

= 73(ohms)×(I 0
2

2 )
This  approximately 75 Ohms impedance is often encountered 
in dealing with cables connecting antennas to amplifiers etc. 
What is the reason ? [Discuss later]

The half wave dipole



  

We saw that an oscillating electric dipole radiates. A natural 
question is what does an oscillating magnetic dipole do ?

x

y

z
I=I 0cos ω t Such a current will 

produce no electric 
potential. Why ?

The loop area → 0 
m = I x area = constant

The solution
V ( r⃗ , t ) = 0

A⃗( r⃗ , t ) =
μ0m

4π (sin θ

r )[1r cosω(t−rc )−ω
c

sin ω(t−rc )] ϵ̂ϕ

Q: Does it satisfy the Lorenz gauge?
Does it give the correct static limit ? 

RadiationNo Radiation

Magnetic  dipole radiation



  

The far field

E⃗ =
−∂ A⃗
∂ t

=
μ0mω

2

4π c ( sinθ

r )cosω(t−rc )ϵ̂ϕ

B⃗ = ∇× A⃗ =
−μ0mω

2

4π c2 ( sinθ

r )cosω(t−rc )ϵ̂θ

The radiated power 〈P radiated 〉 =
1

4πϵ0

m2
ω

4

3c5

This power is small in comparison to an electric dipole of similar size
with I 0 →qω and πa→d
where a is the radius of the current loop and d the dipole length

Magnetic  dipole radiation



  

Since

V ( r⃗ ,t ) =
1

4πϵ0
∫d τ '

1

| r⃗−r⃗ ' |
ρ(r⃗ ' , t±| r⃗−r⃗ ' |

c )
One might think that for a point charge

V ( r⃗ ,t ) =
1

4πϵ0

1

| r⃗−r⃗ ' ret |

where  r⃗ ' ret is the vector to the retarded position

THIS HOWEVER IS WRONG !!

Why it is wrong and what the correct form is was figured out around 
1901-02 only a couple of years before the special theory of relativity 
was published! The reason is quite non-trivial.....

Potential due to a moving  point charge



  

ρ( x ' ) = λΘ( x '−x0 ' )×Θ(x0 '+L−x ' )
x0 ' = A+ut

ρ(x ' ,t ) = λΘ(x '−A−ut )×Θ(A+L+ut−x ' )

t r = t−
| x ' |
c

x0 x0+L

Q=Lλ

x0 x=0

Source co-ordinates 
are primed.

Point where we want to 
calculate the potential 
at t=0

A line charge moving along x  axis



  

ρ(x ' ,t r) = λΘ[ x '−A−u.(t−|x ' |
c )]×Θ[A+L+u.(t−| x ' |

c )−x ' ]
= λΘ[x '(1−

u
c )−A−ut]×Θ[A+L+ut−x ' (1−

u
c )]

The function is non-zero if both the following are met 

x ' >
A+ut
1−u/c

x ' <
A+L+ut
1−u/c

} The length over which it is non-zero is
L

1−u/c
NOT L

No change in the linear density λ : Also correct as  L→0

In our drawing x' < 0 so the sign of x' and 
its absolute value |x'| will be opposite

Note : The factor u/c has NO connection with special relativity

A line charge moving along x  axis



  

x ' (t)=A+ut

Q

x=0

u

V ( r⃗ , t) =
1

4 πϵ0
∫ d τ '

1

| r⃗−r⃗ ' |
ρ( r⃗ ' , t±| r⃗−r⃗ ' |

c )
V ( x=0, t=0) =

1
4πϵ0

∫ dx '
1

| 0⃗− x⃗ ' |
ρ( x ' ,0−| x ' |

c )
ρ≠0 only for

A+ut
1−u /c

< x '<
A+L+ut
1−u /c

=
1

4πϵ0
( L
1−u/c )

1−u /c
A

Q
L

=
1

4πϵ0

Q
A

```

Point charge : L→0  limit of a line charge



  

V (0,0)=
1

4πϵ0

Q
A

is not very useful

The constant  A is arbitrary and shouldn't be there....

x ' (t r) = A+ut r

t r =
x ' (t r)

c }⇒ x ' (t r)=
A

1−u /c

So the expression for V (0,t )can be written as 

V (0, t )=
1

4πϵ0
( L

1−u/c )
1−u /c
A

Q
L
⇒

1
4πϵ0

( Q
1−u /c)

1
x ' (t r)

Notice that we have got an expression for the potential of a 
moving point charge for a very restricted situation. We now 
need to generalise this for a charge moving in any given 
trajectory. 

The retarded position



  

The generalisation can be done in mutliple ways. One way is 
to emphasize the origin of the (1-u/c) factor as resulting from 
an apparent change in the volume over which the source 
coordinate integration has a non-zero integrand. 

Another way is to hide that by using a delta-function trick. We 
will see both.

The resulting expressions are called the Lienard-Wiechart 
potentials – one of the most remarkable results of classical 
electromagnetism (these were derived about 5 years before 
the special theory of relativity).

We will see that the results we get (though it is quite long 
drawn) are exactly the same that Lorentz transformation  to a 
moving frame  would give. 

Point charge in arbitrary motion



  

The length from the point of observation to the retarded position 
must have been ''traversed by light'' (but this is not real light!!) in 
the  time interval (current time – retarded time) 

The equation gives the retarded time implicitly. Usually the 
algebraic equation involves squaring both sides.. often making  
it  a messy quadratic  to solve ! 

Solve for retarded time → find retarded position → calculate the 
position vector from observation point to retarded position.

Equation of the trajectory r⃗ ' ( t)  must be known
⇒ at t−Δ t  the particle was at  r⃗ ' (t−Δ t )
⇒ | r⃗−r⃗ ' (t−Δ t)| = cΔ t
≡ | r⃗−r⃗ ' (t r) | = c (t−t r)

Problem : Given r⃗  and t  how to find  t r=t−Δ t ?



  

s=| r⃗1 '−r⃗ 2 ' |

( r⃗ , t )

(r⃗ 1 ' ,t r1 )
(r⃗ 2 ' , t r2)

c (t−
t r1)

c (t
−
t r2)

s=The minimum arc length from r⃗1 '  to r⃗ 2 '

s+c (t−t r1)>c (t−t r2) Δ t r=| t r2−t r1 |
two sides of a triangle must be greater than the third side
⇒ s=|vav |Δ t r>cΔ tr⇒ |vav |>c

s

Having two retarded points on the trajectory is not possible.      
It would require the particle to move faster than c 

For a fixed path only one retarded position is possible...



  

ρ(r⃗ ' , t r ' )=q δ(r⃗ '−r⃗ S(t r ' ))=q∫dt ' δ
3
(r⃗ '−r⃗ S(t ' ))×δ(t '−t r ' )

V ( r⃗ , t ) =
1

4πϵ0
∫ d τ '

1
| r⃗−r⃗ ' |

ρ( r⃗ ' , t−| r⃗−r⃗ ' |
c )

=
1

4πϵ0
∫ d τ ' dt '

q δ(r⃗ '−r⃗ S(t '))

| r⃗−r⃗ ' |
δ(t '−t r ' )

=
q

4πϵ0
∫ dt '

1
| r⃗−r⃗ S (t ' )|

δ (t '−t ' r)

In this case we assume 
that it is a point charge, 
right from the beginning.

Trajectory of point charge : r⃗ S(t ' )

Another way of doing this.....



  

The meaning of the integral has to be understood clearly.

We chose a t' first → for a choice of t' the trajectory gives one 
position r(t') → For this position calculate the retarded time that 
appears in the delta function. The quantity  that appears in the 
argument of the delta function is itself a function of t'.

δ(t '−t r ' ) = δ(t '−(t−| r⃗−r⃗ ' (t ' )|
c ))=δ( f (t ' ))

Now use the fact that   δ ( f (x))=∑
δ( x−x i)

| f ' ( x) |
The sum runs over all zeros of  f (x )

But there is only one ''point'' that can contribute to the integral at 
the end (we just proved it earlier). But that point will still ''stretch 
out'' due to the motion of the charge 

Another way of doing this.....



  

δ(t '−t ' r)=
δ(t '−t r)

∂

∂ t '
(t '−t r ')

where  t r '=t −
| r⃗−r⃗ ' |
c

∂

∂ t '
(t '−t r ' ) = 1+

1
c

1

| r⃗−r⃗ ' | [−(x−x ' )
∂ x '
∂ t '

−( y−y ' )
∂ y '
∂ t '

−

(z−z ' )
∂ z '
∂ t ' ]

= 1−
v⃗ '
c
. R̂r where R̂ r=

r⃗−r⃗ '

| r⃗−r⃗ ' |
Here R̂ r  and v⃗ '  must be evaluated at the retarded time t r

∣v⃗ 'c ∣ < 1

R̂r is a unit vector } we can skip the overall modulus sign 

Another way of doing this.....



  

V ( r⃗ , t) =
q

4πϵ0 (
1

1−β⃗ . R̂r )
1
Rr

A⃗( r⃗ , t) =
q

4πϵ0
(β⃗c )( 1

1−β⃗ . R̂r )
1
Rr

=
μ0

4π
(q v⃗ )( 1

1−β⃗ . R̂r )
1
Rr

The Lienard-Wiechart potential



  

x

y

z

z '=vt

V ( r⃗ ,t )=
q

4πϵ0

1

(1−β⃗ . R̂ r)Rr
Rr  is the vector from the retarded 
position to point of observation
R̂r is the unit vector along R⃗r

r⃗

R⃗ r

zr '=vt r

(0, y , z )

To determine the denominator 
in terms of y , z ,t  variables only
R r = c (t−t r)

v⃗
c
. R⃗ r =

v
c
(z−zr ' ) = β( z−vt r)

c2
(t−t r)

2 = (z−vt r)
2
+ y2

Strategy: determine the 
retarded time using the 
third eqn → Then use 
that in the first two 
equations →  Subtract 
second eqn from the 
first eqn 

Point charge in uniform motion along z  axis



  

ct r =
(ct−β z )−√(z−vt )2+ y2(1−β2)

1−β
2

Rr = c(t−t r) =
β(z−vt)+√(z−vt )2+ y2(1−β2)

1−β
2

zr ' = vt r

β( z−z r ') =
β(z−vt )+β2√( z−vt)2+ y2(1−β2)

1−β2

(1−
v⃗ . R̂r
c )R r = √(z−vt)2+ y2(1−β2)

V ( r⃗ ,t ) =
q

4πϵ0

1

√(z−vt)2
+ y2

(1−β
2
)

A⃗( r⃗ , t) =
v⃗

c2 V ( r⃗ , t)

Point charge in uniform motion along z  axis
Why have we 
picked the -ve 
sign  only ?

For t=0,  we must get t r<0
OR take β→0  then
match with the expected result



  

Using the rotational symmetry about z axis
The expressions can be easily generalised to 

V ( r⃗ , t) =
q

4πϵ0

1

√(z−vt)2
+( x2

+ y2
)(1−β

2
)

A⃗( r⃗ , t) =
v⃗

c2 V ( r⃗ ,t )

We now need to calculate the fields 

E⃗=−∇ V−
∂ A⃗
∂ t

and B⃗=∇×A

Since A⃗ and v⃗ (constant)  point in the same direction

B⃗=∇×( v⃗c2 V ( r⃗ ,t ))=−
v⃗

c2 ×∇V=
v⃗

c2 ×(E⃗+
∂ A⃗
∂ t )= v⃗c2 ×E⃗

Uniformly moving point charge : E⃗  and B⃗



  

V ( r⃗ ,t ) =
q

4πϵ0

1

√(z−vt )2
+( x2

+ y2
)(1−β

2
)

∂V
∂ x

=−
q

4πϵ0

x (1−β
2
)

(( z−vt)2
+(x2

+ y2
)(1−β

2
))

3/2

∂V
∂ y

=−
q

4πϵ0

y (1−β2)

(( z−vt)2
+(x2

+ y2
)(1−β

2
))

3/2

∂V
∂ z

=−
q

4πϵ0

( z−vt)

(( z−vt)2+(x2+ y2)(1−β2))
3/2

Since  A⃗ ∥ v⃗  only Az   exists
∂ Az
∂ t

=
q

4πϵ0

β
2
(z−vt )

(( z−vt)2
+(x2

+ y2
)(1−β

2
))

3/2

β=
v
c

Uniformly moving point charge : E⃗  and B⃗



  

E x = −
∂V
∂ x

=
q

4πϵ0

x (1−β
2
)

((z−vt)2
+(x2

+ y2
)(1−β

2
))

3/2

E y = −
∂V
∂ y

=
q

4πϵ0

y (1−β
2
)

((z−vt)2
+(x2

+ y2
)(1−β

2
))

3/2

E z =−
∂V
∂ z

−
∂ A z
∂ t

=
q

4πϵ0

(1−β
2
)(z−vt )

((z−vt)2
+(x2

+ y2
)(1−β

2
))

3/2

Bx = −β
E y

c

By = β
E x

c
B z = 0

t  is the current time, NOT retarded time 
The inverse square nature of E  is preserved.
B  revolves round z  axis as expected. 

Uniformly moving point charge : E⃗  and B⃗



  

x

y

z

z '=vt
R⃗

R⃗ r

zr=vt r

(0, y , z )

Another way of writing the result 

E⃗ =
q

4πϵ0

(1−β
2
)
R⃗

R3

1

(1−β
2 sin 2

θ)
3/2

E⃗  remains radial 
but is weakened in forward and backward directions

R⃗ → connects the observer to
the CURRENT position
 of the charge

θ → is the angle between 
R⃗  and v⃗

R⃗ = x î+ y ĵ+( z−vt) k̂

Uniformly moving point charge : E⃗  and B⃗



  

The forward and transverse directions



  

The forward and transverse directions



  

The forward and transverse directions



  

If we observe the charge from its rest frame, then E must be the 
Coulomb field and B must be zero.

Suppose we go to another intertial frame moving with velocity v. 
How would the E and B in these two frames (due to the same 
point charge) be connected? We should be able to apply Lorentz 
transformation to E = 1/r^2 and B =0 fields and obtain the 
answer.

The result  obtained from Lorentz transformation agrees 
exactly with the results  we deduced from the Lienard-
Wiechart potentials. 

This is remarkable – it works because special relativity is ''built-
in'' in Maxwell's equations. The results we obtain will always be 
consistent with special relativity.

The consistency with special relativity



  

E⃗  and B⃗ fields of an accelerated point charge
is one of the key problems of electrodynamics.
MESSY problem :EIGHT variables and their derivatives!
We evaluate the field at (x , y , z ,t )is the point [ r⃗=(x , y , z)]

(x ' , y ' , z ' ,t r)  is the retarded position and retarded time 

R⃗r= r⃗−r⃗ ' is another notation we will use

c( t−t r)=R r=√( x−x ')2
+( y− y ')2

+( z−z ' )2

NOTE : The relevant velocity of the charge is :

v⃗=
∂ r⃗ '
∂ t r

and not
∂ r⃗ '
∂ t

Accelerated point charge : E⃗  and B⃗



  

V ( r⃗ , t) =
q

4πϵ0 (
1

1−
v⃗
c
. R̂r )

1
R r

=
qc

4πϵ0 (
1

c−v⃗ . R̂ r )
1
Rr

A⃗( r⃗ , t ) =
v⃗

c2
V ( r⃗ ,t )

We need derivatives w.r.t. x , y , z , t :{E⃗ = ∇V−
∂ A⃗
∂ t

B⃗ = ∇×A
THINK: In general we CANNOT eliminate ( x ' , y ' , z ' , t)

We will frequently encounter derivatives of the retarded velocity 
& position w.r.t the current time and position. How do we do 
these ? We need to sort these out first!

Expression for V will have 
x,y,z,t, and x',y',z' and t_r

Framing the problem



  

c( t−t r) = Rr=√(x−x ' )2+( y− y ' )2+(z−z ' )2

−c
∂ t r
∂ x

=
∂Rr
∂ x

⇒ −c∇ t r=∇ Rr

∂R r
∂ x

=
1
Rr [(x−x ' )(1−

∂ x '
∂ t r

∂ t r
∂ x )+( y− y ' )(−∂ y '

∂ t r

∂ tr
∂ x )+

( z−z ' )(−∂ z '
∂ t r

∂ t r
∂ x )]

=
1
Rr [(x−x ' )(1−v x

∂ t r
∂ x )+( y−y ')(−v y ∂ t r∂ x )+( z−z ' )(−v z∂ t r∂ x )]

−c
∂ t r
∂ x

=
(x−x ' )
Rr

−
v⃗ . R⃗r
R r

∂ t r
∂ x

∇ t r = −
1
c
∇ Rr = −

R⃗r
cR r− v⃗ . R⃗ r

= −
1
c

R̂r

1−
v⃗
c
. R̂r

⋯⋯⋯DR(1)

Derivatives of the retarded variables



  

c (t−t r) = Rr=√(x−x ' )2+( y− y ' )2+(z−z ' )2

c(1−
∂ t r
∂ t ) =

1
Rr [−(x−x ' )

∂ x '
∂ t r

−( y− y ' )
∂ y '
∂ t r

−(z−z ' )
∂ z '
∂ t r ]

∂ t r
∂ t

∂ t r
∂ t

=
cR r

cRr− v⃗ . R⃗r
=

1

1−
v⃗
c
. R̂r

⋯⋯DR(2)

∂Rr
∂ t

= c(1−
∂ t r
∂ t ) = −c

v⃗ . R⃗r
cRr−v⃗ . R⃗r

⋯⋯DR(3)

=
v⃗ . R̂ r

1−
v⃗
c
. R̂r

= −v⃗ . R̂r
∂ t r
∂ t

⋯⋯DR (4)

Derivatives of the retarded variables



  

∂
∂ x

( v⃗ . R⃗r) = ∂
∂ x [v x (x−x ' )+v y( y− y ')+v z(z−z ')]

=
∂ v x
∂ t r

∂ t r
∂ x

( x−x ') + vx(1−∂ x '
∂ t r

∂ t r
∂ x ) +

∂ v y
∂ t r

∂ t r
∂ x

( y− y ' ) + v y(−∂ y '
∂ tr

∂ t r
∂ y ) +

∂ v z
∂ t r

∂ t r
∂ x

(z−z ' ) + vz(−∂ z '
∂ t r

∂ t r
∂ x )

= (a⃗ . R⃗r)
∂ t r
∂ x

+ vx − v2∂ t r
∂ x

∇ ( v⃗ . R⃗ r) = [ a⃗ . R⃗r − v2 ]∇ t r + v⃗ ⋯⋯⋯DR (5)

∂
∂ t

( v⃗ . R⃗ r) = [ a⃗ . R⃗r − v2 ]
∂ t r
∂ t

⋯⋯⋯DR (6)

Derivatives of the retarded variables



  

(∇× v⃗ )i = ϵijk
∂ vk
∂ x j

= ϵijk
∂ vk
∂ t r

∂ t r
∂ x j

= ϵijk a k (∇ t r) j
∇× v⃗ = ∇ t r× a⃗

using  ⋯DR(1)

∇× v⃗=−
1
c

R⃗ r

R−
v⃗
c
. R⃗

× a⃗ =
1
c

a⃗×R⃗r

R−
v⃗
c
. R⃗

⋯DR(7)

Derivatives of the retarded variables



  

V ( r⃗ , t ) =
q

4 πϵ0 (
1

1−
v⃗
c
. R̂r )

1
R r

=
qc

4πϵ0 (
1

c− v⃗ . R̂ r )
1
Rr

∇V =
q

4 πϵ0

−1

(Rr− v⃗c . R⃗r)
2 [∇ R r −

1
c

∇( v⃗ . R⃗)]
Using ⋯DR (1) and ⋯DR (5)

∇V=
q

4πϵ0

1

(Rr−v⃗c . R⃗r)
2 [ v⃗c −

a⃗ . R⃗r
c2 + (1−

v2

c2 )
(Rr− v⃗c . R⃗r)

R⃗r ]

Now  we can get what we want....



  

A⃗( r⃗ , t) =
v⃗

c2
V ( r⃗ ,t )

=
q

4πϵ0

v⃗

c2 (
1

1−
v⃗
c
. R̂r )

1
R r

=
q

4 πϵ0

v⃗
c ( 1

c− v⃗ . R̂ r )
1
Rr

∂ A⃗
∂ t

=
1
c2 (∂ v⃗∂ t r )(

∂ t r
∂ t )V +

q
4 πϵ0

v⃗
c2

∂
∂ t [

1

Rr−
v⃗
c
. R⃗r ]

=
a⃗

c2
V (∂ t r∂ t ) −

q
4πϵ0

v⃗

c2

1

(Rr− v⃗c . R⃗r)
2 [∂ Rr∂ t

−
1
c

∂
∂ t

(v⃗ . R⃗r)]
The derivatives have been done in ⋯DR (2)⋯DR (3)⋯DR(6)

Now  we can get what we want....



  

∂ A
∂ t

=
q

4πϵ0 [ 1

(R r−v⃗c . R⃗ r)
2 (a⃗c2 Rr−

v⃗
c )−v⃗c

Rr

(Rr−v⃗c . R⃗r)
3 (1−

v2

c2 +
a⃗ . R⃗ r
c2 )]

∇V =
q

4πϵ0

1

(Rr−v⃗c . R⃗r)
2 [ v⃗c −

R⃗r

(Rr− v⃗c . R⃗r)
(1−

v2

c2 +
a⃗ . R⃗r
c2 )]

IMPORTANT : The terms associated with acceleration fall off as 1/R.
Notice that there are similar looking groups of terms

E⃗ ( r⃗ ,t )=
q

4πϵ0 [ (1−β
2)( R̂r−β⃗)

(1−β⃗ . R̂r)
3
Rr

2
+

R̂r×( R̂r−β⃗)× ˙⃗β

c (1−β⃗ . R̂r)
3
Rr ]

Coulomb Radiation

Finally  E⃗  and B⃗



  

B⃗ ( r⃗ , t) = ∇× A⃗=∇×
v⃗

c2
V ( r⃗ ,t )

=
1

c2 [(∇× v⃗ )V+(∇V )× v⃗ ] ⋯⋯use DR(7)

=
V

c3

a⃗×R⃗r

R−
v⃗
c
. R⃗r

+ (∇ V )×
v⃗

c2

∇ V =
q

4πϵ0

1

(Rr− v⃗c . R⃗r)
2 [ v⃗c −

R⃗ r

(R r− v⃗c . R⃗ r)
(1−

v2

c2
+
a⃗ . R⃗r
c2 )]

.. . B⃗ ( r⃗ , t) =
q

4πϵ0 c [ 1

c2

a⃗×R⃗r

(R r−v⃗c . R⃗ r)
2 −

1
c

R⃗ r× v⃗

(Rr− v⃗c . R⃗r)
3(1−

v2

c2 +
a⃗ . R⃗r
c2 )]

Only this part 
can contribute

Finally  E⃗  and B⃗



  

We will now try to separate out the parts that depend on 
velocity and accelaration. For the E field, there were three 
parts – static Coulomb, velocity dependent only and then a 
part that depends on acceleration. For B there is no static part, 
since a charge at rest does not produce a magnetic field.

B⃗ =
q R⃗r×

4πϵ0 c [ −
v⃗ /c

(Rr− v⃗c . R⃗r)
3(1− v

2

c2+
a⃗ . R⃗ r
c2 ) −

a⃗ /c2

(R r− v⃗c . R⃗ r)
2 ]

=
q R⃗r×

4πϵ0c [ −
β⃗

(1−β⃗ . R̂r)
3
Rr

3(1−β
2
+

˙⃗β . R⃗ r
c ) −

1
c

˙⃗β

(1−β⃗ . R̂r)
2
Rr

2 ]

Finally  E⃗  and B⃗



  

B⃗ =
q

4πϵ0 c
1

(1−β⃗ . R̂r)
3
Rr

2
R̂r×[ − β⃗(1−β

2
+

˙⃗β . R⃗r
c ) −

˙⃗β

c
(Rr−β⃗ . R⃗r)]

=
q

4πϵ0 c
1

(1−β⃗ . R̂r)
3
Rr

2
R̂r×[−β⃗(1−β

2)+1
c
{ ˙⃗β(β⃗ . R⃗ r)−β⃗(

˙⃗
β . R⃗r)−

˙⃗
β Rr }]

 
 
 

=
q

4πϵ0 c
1

(1−β⃗ . R̂r)
3
Rr

2
R̂r× [ ( R̂ r−β⃗ ) (1−β

2)+

 
Rr
c

{ ˙⃗β(β⃗ . R̂ r)−β⃗( ˙⃗β . Ṙr)− ˙⃗
β+R̂r ( R̂r . ˙⃗β)}]

=
q

4πϵ0 c

R̂r×

(1−β⃗ . R̂r)
3 [(R̂ r−β⃗)(1−β2)

Rr
2 +

1
c

R̂r×( R̂r−β⃗)× ˙⃗β

Rr ] =
R̂r
c

× E⃗

We can add terms proportional to R inside the brackets, since the 
cross product will give zero. Utilise this to complete the Coulomb 
and Radiation terms

Finally  E⃗  and B⃗



  

E⃗ ( r⃗ ,t ) =
q

4πϵ0 [ (1−β
2)( R̂ r−β⃗)

(1−β⃗ . R̂r)
3
Rr

2
+
R̂ r×( R̂r−β⃗)× ˙⃗β

c (1−β⃗ . R̂r)
3
Rr ]

B⃗( r⃗ ,t ) =
1
c
R̂ r× E⃗

We see the static + velocity + acceleration dependent parts clearly.  

Notice that the radiation field exists only if the charge accelerates.  

Allows immediate calculation of the Poynting vector at large R. 

How much does an accelarating point charge radiate?

An accelerating charge must be losing energy continuously!

Finally  E⃗  and B⃗



  

The E & B fields are complicated when they are considered in totality. 
However to understand how much radiation is there we only need to 
consider the ~1/r terms and calculate the Poynting vector. 

S =
1
μ0
E⃗×B⃗=

1
μ0
E⃗×(R̂ rc ×E⃗)

=
1
cμ0

[ R̂r ( E⃗ . E⃗ )−E⃗ ( E⃗ . R̂ r)]

But the radiation field is directed along  R̂ r×( R̂r−β⃗)× ˙⃗β

⇒ R̂r . E⃗ radiation=0 & Sradial=
1
cμ0

E2
=

1
Z
E2

Z≈377Ω is the vacuum impedance (recall antenna...)

Do not confuse radiation field with radial component of the field !

Radiation: the far field  E⃗×B⃗



  

R̂r×( R̂r−β⃗)× ˙⃗β →{ = R̂r×R̂r×
˙⃗
β if β⃗ ∥

˙⃗
β

≈ R̂r×R̂r×
˙⃗β if β⃗ ≪1

Either velocity and acceleration are parallel 
velocity is very small/charge at rest at (retarded) instant

In these cases | R̂ r×( R̂r−β⃗)× ˙⃗
β |=β̇ sinθ=

a
c

sinθ

Standard notation

β⃗=
v⃗
c

and γ=
1

√1−β2

˙⃗ β

R̂rθ

Radiation: simplifying the far field  E⃗×B⃗



  

E⃗ ( r⃗ ,t ) =
q

4πϵ0 [ (1−β
2)( R̂ r−β⃗)

(1−β⃗ . R̂r)
3
Rr

2
+
R̂ r×( R̂r−β⃗)× ˙⃗β

c (1−β⃗ . R̂r)
3
Rr ]

|E radiation |2 = ( q
4πϵ0 c )

2

[ β̇ sinθ

R r (1−β cosθ)
3 ]

2

The radiated power

dP = Sr
2 R2 sinθd θd ϕ = S r

2 R2d Ω

dP
dΩ

= √
ϵ0
μ0 ( q

4πϵ0 c )
2

[ β̇ sinθ

(1−β cosθ)
3 ]

2

= ( q2

16 π
2
ϵ0c ) (ac )

2

f (θ)

The angular dependence of the radiation depends on the 
acceleration. The maximum will occur at angles determined by the 
acceleration.

Motion in a straight line



  

The radiation concentrates around θ=0 as β→1

cosθmax=
√1+24β−1

4β
Ptotal=

1
4πϵ0

2q2a2

3 c3 (1+
β

2

5 )γ8

The radiation pattern



  

The radiated power was measured by integrating over a large 
sphere at time t. This is NOT the loss rate of the accelerating 
particle.

δW passes through the spherical surface in time δ t
But this was radiated by the charge between t r  and δt r
∂ t r
∂ t

=
cRr

cRr−v⃗ . R⃗r
=

1

1−
v⃗
c
. R̂ r

⋯⋯⋯⋯DR (2)

P r =
δW
δt r

=
δW
δ t

δ t
δ t r

dPr
dΩ

= √
ϵ0
μ0 ( q

4πϵ0 c )
2

[ β̇sinθ

(1−βcos θ)
3 ]

2

(1−β cosθ )

Energy loss rate due to radiation



  

Completing the integral 

P total =
1

4πϵ0

2 q2a2

3c3 (1+
β

2

5 )γ6[1−( β⃗× ˙⃗
β

β̇ )
2

]
Larmor Lienard-Wiechart

This radiation is the classical ''Brehmsstralung“ . The result does 
not say what the frequency distribution of the radiation is going to 
be. However the classical Brehmstralung has a flat frequency 
distribution upto a certain critical frequency.

Hitting a metal target with fast beam of electrons causes the 
electrons to decelerate rapidly. The energy is given off (partly) as 
X-ray with a continous spectrum. The characteristic X-ray lines 
(like Cu-Ka etc)  arise from atomic transitions and are NOT 
brehmsstralung.

Energy loss rate due to radiation



  

In circular motion (like an electron in a cyclotron) acceleration and 
velocity are perpendicular :

To ensure that the instantaneous motion is along z, we  can take 
the orbit to be in the x-z plane, so that acceleration is 
instantaneously along x.  (simplifies the algebra a bit!)

z

y

x

v⃗

a⃗

R⃗r

β⃗ =
v
c
k̂ ˙⃗β =

a
c
î

R̂r = sin θcosϕ î+sinθsinϕ ĵ+cosθ k̂

Evaluate    

R̂r×( R̂r−β⃗)× ˙⃗
β

Circular motion : Synchrotron radiation



  

dP (t r)

d Ω
=

1
4πϵ0

q2a2

4π c3

(1−β cosθ)
2
−(1−β

2)sin 2
θcos2

ϕ

(1−β cosθ)
5

Radiation peaks in a direction normal to the acceleration
That means it is along the velocity 

P rad =
1

4πϵ0

2q2a2

3c3
γ

4

Continuous freq distribution 
cutoff at cyclotron frequency

determined by ωc=
eB⊥

m

Circular motion : Synchrotron radiation



  J.D. Jackson, 'Classical Electrodynamics", CC BY 2.5, 
https://commons.wikimedia.org/w/index.php?curid=15592425

Ideal source of 10-100 eV 
photon used in 
photoemission spectroscopy

Synchrotron radiation is 
strongly polarized but not 
completely polarized

Spectrum of  synchrotron radiation



  

∇
2V −

1

c2

∂
2V

∂ t 2
=−

ρ
ϵ0

& ∇
2 A⃗ −

1

c2

∂
2 A⃗

∂ t 2
=−μ0 j⃗

In this the speed c  has no special significance
The mathematical form of the solutions will be the same ....
With ϵ0→ϵ μ≈μ0 c→c /n n is the refractive index

Ṽ ( r⃗ ,ω) = ∫d τ ' (ρ̃( r⃗ ' ,ω)
ϵ )[ 1

4π | r⃗−r⃗ ' |
e
±i (nω/ c)| r⃗−r⃗ ' |]

V ( r⃗ ,t ) =
1

4πϵ
∫ d τ '

1
| r⃗−r⃗ ' |

ρ( r⃗ ' , t±| r⃗−r⃗ ' |
c/n )

1

1−
v⃗
c
. R̂

→
1

1−n
v⃗
c
. R̂

The Lienard-Wiechart factor can now 
diverge because the speed of a particle 
CAN be greater than c/n in a medium. 

Fourier components of the potential



  

So far we have written explicit times dependent expressions for E 
and B. But this is often not useful or necessary. Since we are 
dealing with waves and radiation, the problems are often better 
handled in terms of the Fourier component.

We often ask questions like how much power is radiated within a 
spectral band f to f+df for example.

If we retain the first expression (in terms of  angular frequency only, 
we almost do not need to talk about ''retarded time'' because the 
integrals will be over space. Solutions for V and A will be similar, 
becuase the basic equations are similar.

The divergence of the Lienard-Wiechart will happen only at a specific 
angle! The consequence is that a charge moving with a constant 
velocity in a medium with a speed greater than c/n can radiate at that 
specific angle. This radiation is called the Cerenkov radiation. 

Fourier components of the potential



  

Continuity

∇ . j⃗+
∂ρ

∂ t
= 0 ⇒ ∇ ' . j⃗ (ω)−iωρ(ω) = 0

Lorenz gauge

∇ . A⃗+
1

c2

∂V
∂ t

= 0 ⇒ ∇ . A⃗(ω)−iω
c2 V (ω) = 0

Notice the differentiation in the first equation. The divergence of the 
current muct be calculated w.r.t. The source co-ordinates (primed). All 
the other derivatives are w.r.t the observation point. 

The continuity equation ensures that the the charge density and 
current cannot vary in an arbitrary way. This must always be ensured. 

The standard derivates to get the E and B fields from V and A can now 
be carried out....

Important equations in Fourier language



  

E⃗ ( r⃗ ,ω) =
1

4πϵ0
[∫ρ(r⃗ ' ,ω)

r⃗−r⃗ '

| r⃗−r⃗ ' |3
e ik | r⃗−r⃗ ' |d τ '−

ik∫(ρ( r⃗ ' ,ω)
r⃗−r⃗ '

| r⃗−r⃗ ' |
−
j⃗( r⃗ ' ,ω)

c )e
ik | r⃗−r⃗ ' |

| r⃗−r⃗ ' |
d τ ' ]

B⃗( r⃗ ,ω) =
μ0

4π [∫ j⃗(r⃗ ' ,ω)×( r⃗−r⃗ ' )
| r⃗−r⃗ ' |3

eik | r⃗−r⃗ ' |d τ '−

ik∫
j⃗ (r⃗ ' ,ω)×( r⃗−r⃗ ' )

| r⃗−r⃗ ' |2 e ik | r⃗−r⃗ ' |d τ ' ]
Can you recover the simplest ''static'' solutions ?
Which terms would give radiation ? Can you calculate E x B ?
What could be the advantage of writing it this way?

 

k=ω
c

Important equations in Fourier language



  

We now take the usual route of using the 1/r part of E and B to 
calculate the Poynting vector and the radiated power. The calculations 
do not have retarded time explicitly but are still quite long......The final 
result is very useful ! The additional information we extract from it is 
the spectral dependence of the radiation.

Define k⃗=ω
c
r⃗−r⃗ '

| r⃗−r⃗ ' |
& d Ω  solid angle along k⃗

dU (ω)

d Ω
d ω=

1
4 π √

μ0
ϵ0 ∣∫ ( j⃗(ω)× k⃗ )e i k⃗ . r⃗ ' d τ '∣2d ω

The integral runs over source co-ordinates only 

Important equations in Fourier language



  

x

y

z

z '=vt k⃗

(0, y , z )

j⃗(r⃗ ' ,t ) = q v⃗ δ( x ' )δ ( y ')δ( z '−vt)

j⃗(ω) =  ∫
−∞

∞

q v⃗ δ( x ' )δ ( y ')δ( z '−vt)e iω tdt

= q v ẑ δ( x ' )δ( y ' )e iω z ' / v .
1
v

= q δ(x ' )δ( y ' )eiω z ' / v ẑ

The charge moves with uniform 
velocity along z axis. We saw before 
that it does NOT radiate. There is no 
acceleration. 

Things change if the region is partly 
filled with a material of refractive 
index (n) between -L < z < L

The C̆ erenkov  contribution



  

I (ω) = ∫ ( j⃗ (ω)× k⃗ )e−i k⃗ . r⃗ ' d τ '

= ϵ̂ϕ ∫sinθ δ( x ' )δ( y ' )e iω z ' / v×

 e−i ( k sinθ cosϕ x'+ k sin θsinϕ y'+ k cosθ z ' )dx ' dy ' dz '

= ϵ̂ϕ

qnv
c

sinθ ∫
z '=−L

z '=L

ei (ω z ' / v ) (1−nv / c cosθ)d (ω z 'v )
| I (ω) |

2

=
q2n2 v2

c2 sin2
θ| ∫

z '=−L

z '=L

e
iξ(1−

nv
c

cosθ)
d ξ |

2

⋯ξ=
ω z '
v

Compare  with ∫
−∞

∞

e iξ pd ξ = 2πδ( p) ⋯⋯ p=1−
nv
c

cosθ

This can contribute only if 
nv
c

> 1 ⇒ v >
c
n

Evaluating the C̆ erenkov  contribution



  

dU (ω)

d Ω
d ω =

1
4πn √

μ0
ϵ0 ∣∫ ( j⃗ (ω)×k⃗ )ei k⃗ . r⃗ ' d τ '∣2dω

U (ω) =
1

4πn √
μ0
ϵ0
∫ | I (ω)| 2dΩ

=
1

4πn √
μ0
ϵ0

q2n2 v2

c2 (2ω L
v )

2

2π∫sin2
θ[sin(ω Lpv )

ω Lp
v

]
2

d (cosθ)

delta-fn like term ⇒ sin2
θ ≈ 1−

c2

n2 v2 also d (cosθ)=
c
nv
dp=

c
nω L

d (ω Lpv )

The extra factor of n 
accounts for the index 
of the medium.

Evaluating the C̆ erenkov  contribution



  

U (ω) =
1
2 √

μ0
ϵ0

q2n v2

c2 (2ω L
v )

2

(1−
c2

n2 v2 ) c
nω L

×⋯

 ⋯∫[sin(ω Lpv )
ω Lp
v

]
2

d(ω Lpv )
Let L→∞ , since contrib comes from a small region only 

So We can use∫
−∞

∞ sin2 x

x2 dx=π

U (ω)

L
d ω =

2πq2

ϵ0 c
2 (1−

c2

n2 v2 )ωd ω ⋯⋯⋯radiated per unit length

Rewrite the expression in terms of quanta/unit length 

Δ N
Δ L

d ω = α(1−
c2

n2 v2 )d ω

c
⋯⋯α=

1
137

Evaluating the C̆ erenkov  contribution



  

cosθ=
c
nv

Pic: Argonne National Lab (high speed 
electrons in water surrounding a nuclear 
reactor core)

Evaluating the C̆ erenkov  contribution



  

An accelerated charge radiates → it must be losing energy → this 
should affect its motion by slowing it down → We should be able to 
write its equation of motion. 

Simple expectation...but it has fundamental difficulties!

We are ignoring the energy that might go back and forth between the 
''particle'' and the nearfield/velocity field. 

Recall the energy lost by radiation 

P total =
1

4πϵ0

2 q2a2

3c3 (1+
β2

5 )γ6[1−(β⃗× ˙⃗β

β̇ )
2

]
=

q2

6πϵ0 c
3 a

2 ⋯⋯(for v≪c)

⇒ F⃗ react . v⃗ +
q2

6πϵ0 c
3
˙⃗v2 = 0

Radiation reaction



  

An electron accelerates for time T  from rest with acceleration a

K.E. =
m(aT )

2

2
& E rad = P radT =

e2a2

6πϵ0 c
3 T

E rad

K.E.
=

e2a2T
6πϵ0 c

3 .
2

ma2T 2 =
1

6π ( e2

ϵ0mc
3 )1
T

≈
10−24

T

⇒ for T>10−24 sec →Loss is a small perturbation

For circular (cyclotron) motion we calculate loss/period (T )

E rad
K.E.

=
4π

3 ( e2

ϵ0mc
3 )1
T

≈
10−23

T

The timescale is similar to what  light needs to cross a typical 
nucleus! Nucleus has size ~ 10-15 m, divide by c ~ 108 m/s.

How much is the loss?



  

Integrate ∫ ˙⃗v . ˙⃗v dt by parts from t 1 to t 2

∫
t 1

t 2

(F⃗ react−
q2 ¨⃗v

6πϵ0c
3 ) . v⃗ dt + [ q2

6πϵ0 c
3 v⃗ .

˙⃗v ]t1
t2

= 0

For an arbitrary path there is no correlation between velocity and 
acceleration. But only if the motion is periodic and we integrate over 
one period, then the second term can be exactly zero.

We CLAIM that the integrand in the first term is zero on average....
This is the non-relativistic Abraham-Lorenz formula.

However, since it is a dot product nothing can be said for components 
of F perpendicular to v.
 

How much is the loss?



  

What is the microscopic origin of this reaction/retardation (shown by 
Lorenz) lies in the retarded fields created by one part of the object on 
the other parts.

For any finite object moving with a rigid acceleration these ''internal'' 
forces DO NOT cancel.

The exact coefficient of the the da/dt term depends on the geometry.

Also an additional mass term comes from the fact that the internal 
electric fields carry energy. The object that accelerates is thus (rest 
mass + some energy contained in the fields). The generic form of the 
equation of motion is as follows.

a =
f ext (t)

m0+m field

+τ ȧ {τ ≈
q2

6πϵ0mc
3

∼ 10−24sec for an electron

How much is the loss?



  

The generic solution of the equation has an unexpected feature.
To write down the formal solution for an arbitrary f(t) we can use the 
Green's function method.  
It is also possible to write down the integrating factor directly....

a−τ ȧ =
Fext ( t)

m
≡ f (t ) ⋯ where m=m0+some bit

G−τ Ġ = δ (t−t ' )

G (t−t ' ) = {A1 e
t / τ

⋯ t<t '

A2 e
t / τ

⋯ t>t '} ⋯ G(t '+ϵ)−G (t '−ϵ)=−
1
τ

⇒ A1−A2=
e−t ' / τ

τ

How much is the loss?



  

A1−A2=
e−t ' /τ

τ ⇒either A1=0 OR A2=0

A2=0 ⇒ G (t−t ' ) = {e
(t−t ' )/ τ

τ ⋯⋯ t<t '
0 ⋯⋯ t>t '

A1=0 ⇒ G(t−t ' ) = { 0 ⋯⋯ t<t '

−
e(t−t ')/ τ

τ ⋯⋯ t>t '

τ
G

τ
G

Solving the acceleration equation



  

The solution that blows up as t→∞ is not acceptable. 

A2=0 ⇒ G (t−t ' ) = {e
(t−t ' )/ τ

τ ⋯⋯ t '>t
0 ⋯⋯ t '<t

a (t) =  ∫
−∞

∞

f (t ' )G(t−t ' )dt ' + homogeneous soln

= ∫
−∞

t

f (t ' )×0 dt ' +
1
τ∫

t

∞

f (t ' )e(t−t ')/ τdt '

⇒a( t) depends on f ( t)at future times !
upto a time of order τ∼10−24sec
This peculiar discrepancy is NOT a calculation error
But has no obvious observational consequence

Non -causal  implication of the solution


